J. Mater. Sci. Technol. ›› 2021, Vol. 94: 175-182.DOI: 10.1016/j.jmst.2021.02.072
• Research Article • Previous Articles Next Articles
Seong-Tae Kima, Jong Min Parka, Kwi-Il Parka, Sang-Eun Chuna, Ho Seong Leea, Pyuck-Pa Choib, Seonghoon Yia,*(
)
Received:2021-01-20
Revised:2021-02-10
Accepted:2021-02-13
Published:2021-05-17
Online:2021-05-17
Contact:
Seonghoon Yi
About author:*E-mail address: yish@knu.ac.kr (S. Yi).Seong-Tae Kim, Jong Min Park, Kwi-Il Park, Sang-Eun Chun, Ho Seong Lee, Pyuck-Pa Choi, Seonghoon Yi. Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix[J]. J. Mater. Sci. Technol., 2021, 94: 175-182.
| Sample | Mesopore ratio (%) | Specific surface area (m2 g-1) | Green density (g cm-3) |
|---|---|---|---|
| Norit | 27.8 | 1779 | 0.59 |
| PVDF | 17.3 | 971 | 1.00 |
| 2PV1PT | 23.9 | 1324 | 0.59 |
| PVsol | 36.3 | 1230 | 0.30 |
Table 1 Specific surface area and green density of porous carbon powders.
| Sample | Mesopore ratio (%) | Specific surface area (m2 g-1) | Green density (g cm-3) |
|---|---|---|---|
| Norit | 27.8 | 1779 | 0.59 |
| PVDF | 17.3 | 971 | 1.00 |
| 2PV1PT | 23.9 | 1324 | 0.59 |
| PVsol | 36.3 | 1230 | 0.30 |
| Sample | Carrier concentration (cm-3) | Electrical conductivity (S m-1) | Mobility (cm2 V-1 s-1) |
|---|---|---|---|
| Bare BST | 2.12 × 1019 | 27,729 | 81.77 |
| Norit-BST | 2.10 × 1019 | 25,613 | 76.15 |
| PVDF-BST | 2.03 × 1019 | 26,245 | 80.50 |
| 2PV1PT-BST | 2.16 × 1019 | 26,788 | 77.49 |
| PVsol-BST | 2.12 × 1019 | 26,553 | 78.03 |
Table 2 Hall measurement data of BST + porous carbon powder composites at room temperature.
| Sample | Carrier concentration (cm-3) | Electrical conductivity (S m-1) | Mobility (cm2 V-1 s-1) |
|---|---|---|---|
| Bare BST | 2.12 × 1019 | 27,729 | 81.77 |
| Norit-BST | 2.10 × 1019 | 25,613 | 76.15 |
| PVDF-BST | 2.03 × 1019 | 26,245 | 80.50 |
| 2PV1PT-BST | 2.16 × 1019 | 26,788 | 77.49 |
| PVsol-BST | 2.12 × 1019 | 26,553 | 78.03 |
Fig. 6. Thermal conductivity and figure-of-merit of composites with 0.2 vol.% carbon material: (a) total thermal conductivity (κtotal), (b) electronic thermal conductivity (κele), (c) lattice thermal conductivity (κlat), and (d) figure-of-merit, zT.
Fig. 7. (a) Lattice thermal conductivity (closed symbol) and electrical conductivity (open symbol) of composites with mesopore ratios of four carbon additives and (b) pore size distribution plots of the four carbon samples.
Fig. 8. Schematic illustrating phonon scattering in the mesoporous carbon incorporated composite. Acoustic phonons are scattered at the interface between BST and mesoporous carbon as well as at the pore surface within the mesoporous carbon.
Fig. 9. (a) Photograph of the measurement setup for evaluating the output performance of the PVsol-BST block-based single element. The inset shows the cross-sectional scheme of the single element. (b) Simulated thermoelectric potential and temperature distributions (inset) inside the PVsol-BST block. (c, d) Voltage-current and power-current curves of the bare BST block (c) and PVsol-BST block-based single element (d).
| [1] | R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Solid-State Elec-tron 53 (2009) 684-693. |
| [2] |
A. Harb, Renew. Energy 36 (2011) 2641-2654.
DOI URL |
| [3] |
M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Renew. Sustain. Energy Rev 24 (2013) 288-305.
DOI URL |
| [4] | J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, J. Mater. Chem. C 3 (2015) 10362-10374. |
| [5] | I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Sci. Tech-nol. Adv. Mater. 19 (2018) 836-862. |
| [6] | N.S. Hudak, G.G. Amatucci, J. Appl. Phys. 103 (2008) 101301. |
| [7] | B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Nat. Rev. Mater. 1 (2016) 16050. |
| [8] |
W. Liu, Q. Jie, H.S. Kim, Z. Ren, Acta Mater. 87 (2015) 357-376.
DOI URL |
| [9] | B.I. Ismail, W.H. Ahmed, Recent Patents Electr. Eng. 2 (2009) 27-39. |
| [10] |
J.P. Fleurial, JOM 61 (2009) 79-85.
DOI URL |
| [11] |
H.J. Goldsmid, Materials (Basel) 7 (2014) 2577-2592.
DOI URL |
| [12] | G. Tan, L.-.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116 (2016) 12123-12149. |
| [13] | X.L. Shi, J. Zou, Z.-.G. Chen, Chem.Rev. 120 (2020) 7399-7515. |
| [14] |
M. Hong, W. Lyu, Y. Wang, J. Zou, Z.-.G. Chen, J.Am. Chem. Soc. 142 (2020) 2672-2681.
DOI URL |
| [15] |
M. Hong, W. Lyu, M. Li, S. Xu, Q. Sun, J. Zou, Z.G. Chen, Joule 4 (2020) 2030-2043.
DOI URL |
| [16] |
S.I. Wang, L.Z. Su, Y.T. Qiu, Y. Xiao, L.D. Zhao, J. Mater. Sci. Technol. 70 (2021) 67-72.
DOI URL |
| [17] |
A. Applegarth, J. Am. Psychoanal. Assoc. 37 (1989) 1097-1107.
PMID |
| [18] | W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Phys. Rev. Lett. 96 (2006) 1-4. |
| [19] |
L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.
DOI URL |
| [20] |
S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348 (2015) 109-114.
DOI URL |
| [21] | J.I. Jang, J.E. Lee, B.-.S. Kim, S.-.D. Park, H.S. Lee, RSC Adv. 7 (2017) 21671-21677. |
| [22] |
H.S. Lee, B.S. Kim, C.W. Cho, M.W. Oh, B.K. Min, S.D. Park, H.W. Lee, Acta Mater. 91 (2015) 83-90.
DOI URL |
| [23] |
M. Hong, K. Zheng, W. Lyv, M. Li, X. Qu, Q. Sun, S. Xu, J. Zou, Z.G. Chen, Energy Environ. Sci. 13 (2020) 1856-1964.
DOI URL |
| [24] | W. Kim, J. Mater. Chem. C 3 (2015) 10336-10348. |
| [25] |
S.K. Kihoi, H. Kim, H. Jeong, H. Kim, J. Ryu, S. Yi, H.S. Lee, J. Alloys Compd. 806 (2019) 361-369.
DOI URL |
| [26] |
R. He, T. Zhu, Y. Wang, U. Wolf, J.-C. Jaud, A. Sotnikov, P. Potapov, D. Wolf, P. Ying, M. Wood, Z. Liu, L. Feng, N.P. Rodriguez, G.J. Snyder, J.C. Grossman, K. Nielsch, G. Schierning, Energy Environ. Sci. 13 (2020) 5165-5176.
DOI URL |
| [27] |
G. Rogl, A. Grytsiv, R. Anbalagan, J. Bursik, M. Kerber, E. Schafler, M. Zehet-baouer, E. Bauer, P. Rogl, Acta Mater 159 (2018) 352-363.
DOI URL |
| [28] | G.J. Snyder, E.S. Toberer, Mater. Sustain. Energy A 7 (2010) 101-110. |
| [29] |
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320 (2008) 634-638.
DOI PMID |
| [30] | Y. Wang, M. Hong, W.D. Liu, X.L. Shi, S.D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou, Z.G. Chen, Chem. Eng. J. 397 (2020) 125360. |
| [31] | P. Dharmaiah, K.H. Lee, S.H. Song, H.S. Kim, S.J. Hong, Mater. Res. Bull. 133 (2021) 111023. |
| [32] |
D. Suh, S. Lee, H. Mun, S.H. Park, K.H. Lee, S.W. Kim, J.Y. Choi, S. Baik, Nano Energy 13 (2015) 67-76.
DOI URL |
| [33] | B. Liang, Z. Song, M. Wang, L. Wang, W. Jiang, J. Nanomater. 2013 (2013) 210767. |
| [34] |
Y.H. Yeo, T.S. Oh, Mater. Res. Bull. 58 (2014) 54-58.
DOI URL |
| [35] |
H. Bark, J.S. Kim, H. Kim, J.H. Yim, H. Lee, Curr. Appl. Phys. 13 (2013) S111-S114.
DOI URL |
| [36] |
T.S. Min, K.T. Kim, I. Son, Appl. Surf. Sci. 415 (2017) 109-113.
DOI URL |
| [37] | K.T. Kim, T.S. Min, S.D. Kim, E.A. Choi, D.W. Kim, S.Y. Choi, Nano Energy 55 (2019) 4 86-4 93. |
| [38] | N. Gothard, J.E. Spowart, T.M. Tritt, Phys. Status Solidi Appl. Mater. Sci. 207 (2010) 157-162. |
| [39] |
I.S. Son, Y. Oh, S.H. Yi, W.B. Im, S.E. Chun, Carbon 159 (2020) 283-291.
DOI URL |
| [40] |
M.E. Anderson, S.S.N. Bharadwaya, R.E. Schaak, J. Mater. Chem. 20 (2010) 8362-8367.
DOI URL |
| [41] |
Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9 (2009) 1419-1422.
DOI URL |
| [42] |
G.C. Catlin, R. Tripathi, G. Nunes, P.B. Lynch, H.D. Jones, D.C. Schmitt, J. Power Sources 343 (2017) 316-321.
DOI URL |
| [43] |
Y.M. Kim, R. Lydia, J.H. Kim, C.C. Lin, K. Ahn, J.S. Rhyee, Acta Mater 135 (2017) 297-303.
DOI URL |
| [44] | I.T. Witting, J.A. Grovogui, V.P. Dravid, G.J. Snyder, J. Mater. 6 (2020) 532-544. |
| [45] | H.J. Kim, H.C. Kim, D. Bin Hyun, T.S. Oh, Met. Mater. Int. 4 (1998) 75-81. |
| [46] |
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320 (2008) 634-638.
DOI PMID |
| [47] | L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, N. Pryds, RSC Adv. 6 (2016) 59565-59573. |
| [48] | H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3 (2015) 1-6. |
| [49] |
Q. Hao, D. Xu, H. Zhao, Y. Xiao, F.J. Medina, Sci. Rep. 8 (2018) 9056.
DOI URL |
| [50] |
B. Xu, T. Feng, M.T. Agne, L. Zhou, X. Ruan, G.J. Snyder, Y. Wu, Angew. Chem. Int. Ed. 56 (2017) 3546-3551.
DOI URL |
| [1] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
| [2] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
| [3] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
| [4] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
| [5] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
| [6] | Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures [J]. J. Mater. Sci. Technol., 2020, 52(0): 172-179. |
| [7] | Chi Ma, Xue Bai, Qiang Ren, Hongquan Liu, Yijie Gu, Hongzhi Cui. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe [J]. J. Mater. Sci. Technol., 2020, 58(0): 10-15. |
| [8] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
| [9] | Jie Hu, Xi’An Fan, Chengpeng Jiang, Bo Feng, Qiusheng Xiang, Guangqiang Li, Zhu He, Yawei Li. Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks [J]. J. Mater. Sci. Technol., 2018, 34(12): 2458-2463. |
| [10] | Cui Yu,Yun Zhang,Tiejun Zhu,Guangyu Jiang,Ji Xu,Bo Zhao,Xinabing Zhao. Preparation and Thermoelectric Properties of Zr1-xTixNiSn0:975Sb0:025 Half-Heusler Alloys [J]. J Mater Sci Technol, 2009, 25(06): 738-741. |
| [11] | Z.W.Zhao, Z.P.Guo, P.Yao, H.K.Liu. Mesoporous Carbon-Tin Nanocomposites as Anode Materials for Li-ion Battery [J]. J Mater Sci Technol, 2008, 24(04): 657-660. |
| [12] | Ying LI, Guiying XU, Maofa JIANG. Thermoelectric Characterization of (Na1-yMy)1.6Co2O4 (M=K, Ca, Sr) [J]. J Mater Sci Technol, 2006, 22(04): 526-528. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
