J. Mater. Sci. Technol. ›› 2022, Vol. 117: 158-166.DOI: 10.1016/j.jmst.2022.02.001
• Research Article • Previous Articles Next Articles
Guangyu Rena, Lili Huangb, Kunling Hub, Tianxin Lia, Yiping Lua,*(), Dongxu Qiaoa, Haitao Zhanga, Dake Xuc,*(
), Tongmin Wanga, Tingju Lia, Peter K. Liawd,*(
)
Received:
2022-01-07
Revised:
2022-01-23
Published:
2022-02-08
Online:
2022-08-01
Contact:
Yiping Lu,Dake Xu,Peter K. Liaw
About author:
pliaw@utk.edu (P.K. Liaw).Guangyu Ren, Lili Huang, Kunling Hu, Tianxin Li, Yiping Lu, Dongxu Qiao, Haitao Zhang, Dake Xu, Tongmin Wang, Tingju Li, Peter K. Liaw. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 117: 158-166.
Fig. 2. SEM images and elemental mapping analysis. (a-b) Backscattered electron images of the Cu0.3 alloy. (c-d) Backscattered electron images of the Cu0.5 alloy. (e) The corresponding elemental mapping of the Cu0.3 alloy.
Fig. 3. The images of the bacterial colony growth after co-culture with alloys. (a) Coupon biofilm and planktonic colonies of E. coli after incubation for 2, 6, 12, 24, and 48 h. (b) Coupon biofilm and planktonic colonies of S. aureus after incubation for 2, 6, 12, 24, and 48 h.
Fig. 4. The CLSM images of live/dead cell staining test. (a) Live/Dead cell staining of E. coli biofilms after incubation with 304 SS, 304-Cu SS, Cu0.3, and Cu0.5. (b) Live/Dead cell staining results of S. aureus biofilms after incubation with 304 SS, 304-Cu SS, Cu0.3, and Cu0.5 alloys.
Fig. 5. The SEM images of bacteria morphology. The SEM images of (a-d) E. coli and (e-h) S. aureus cultured on 304 SS, 304-Cu SS, Cu0.3, and Cu0.5 samples after 24 h.
Fig. 6. The results of Cu-releasing tests, ROS activity tests, and the schematic diagram of germicidal mechanism. (a) The Cu-releasing profile in the DI water. (b) The Cu-releasing profile in bacterial suspension of E. coli. (c) The Cu-releasing profile in bacterial suspension of S. aureus. (d) ROS activity of bacterial suspension after co-culturing with 304 SS, 304-Cu SS, Cu0.3, and Cu0.5 alloys after 24 h (n = 3) (Sidak's multiple comparisons test, two-way ANOVA. 304 vs. 304-Cu, *p < 0.05; 304 vs. Cu0.3, **p < 0.001; 304 vs. Cu0.5, **p < 0.001). Data are displayed as mean ± SD and analyzed by the GraphPad Prism software [2].
Alloys | 304 | 304-Cu | Cu0.3 | Cu0.5 |
---|---|---|---|---|
Ecorr (mV) | -153 | -135 | -115 | -111 |
icorr (μA/cm2) | 2.35 | 2.11 | 2.71 | 2.46 |
Table 1. Electrochemical parameters of 304 SS, 304-Cu SS, Cu0.3, and Cu0.5 alloys.
Alloys | 304 | 304-Cu | Cu0.3 | Cu0.5 |
---|---|---|---|---|
Ecorr (mV) | -153 | -135 | -115 | -111 |
icorr (μA/cm2) | 2.35 | 2.11 | 2.71 | 2.46 |
Fig. 9. The mechanical properties of the Cu-containing HEAs. (a) Compression engineering stress-strain curves of Cu0.3 and Cu0.5 alloys, and (b) the comparison of the specific yield strength and antibacterial rates between Cu-containing HEAs and the traditional antibacterial stainless steel.
Fig. 10. The possible schematic illustration for the contact killing mechanism of Cu-HEAs. (EMP, Embden-Meyerhof-Pranas pathway; PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; PTS, phosphotransferase system).
[1] |
R. Akid, H. Wang, T.J. Smith, D. Greenfield, J.C. Earthman, Adv. Funct. Mater. 18 (2008) 203-211.
DOI URL |
[2] |
J.Y. Xie, M. Zhou, Y.X. Qian, Z.H. Cong, S. Chen, W.J. Zhang, W.N. Jiang, C.Z. Dai, N. Shao, Z.M. Ji, J.C. Zou, X.M. Xiao, L.Q. Liu, M.Z. Chen, J. Li, R.H. Liu, Nat. Commun. 12 (2021) 5898.
DOI URL |
[3] |
T.M. Gross, J. Lahiri, A. Golas, J. Luo, F. Verrier, J.L. Kurzejewski, D.E. Baker, J. Wang, P.F. Novak, M.J. Snyder, Nat. Commun. 10 (2019) 1979.
DOI URL |
[4] |
W.X. Xi, V. Hegde, S.D. Zoller, H.Y. Park, C.M. Hart, T. Kondo, C.D. Hamad, Y. Hu, A.H. Loftin, D.O. Johansen, Z. Burke, S. Clarkson, C. Ishmael, K. Hori, Z. Mamouei, H. Okawa, I. Nishimura, N.M. Bernthal, T. Segura, Nat. Commun. 12 (2021) 5473.
DOI URL |
[5] |
H.L. Karlsson, P. Cronholm, Y. Hedberg, M. Tornberg, L. De Battice, S. Svedhem, I.O. Wallirider, Toxicology 313 (2013) 59-69.
DOI PMID |
[6] | K.S. Chaturvedi, J.P. Henderson, Front. Cell. Infect. Microbiol. 4 (2014) 1-12. |
[7] |
M. Vincent, R.E. Duval, P. Hartemann, M. Engels-Deutsch, J. Appl. Microbiol. 124 (2018) 1032-1046.
DOI PMID |
[8] |
S.A. Yavari, S.M. Castenmiller, J.A.G. van Strijp, M. Croes, Adv. Mater. 32 (2020) 2002962.
DOI URL |
[9] |
Y.F. Zhuang, S.Y. Zhang, K. Yang, L. Ren, K.R. Dai, J. Biomed. Mater. Res. Part B 108 (2020) 484-495.
DOI URL |
[10] |
D. Sun, D.K. Xu, C.G. Yang, J. Chen, M.B. Shahzad, Z.Q. Sun, J.L. Zhao, T.Y. Gu, K. Yang, G.X. Wang, Mater. Sci. Eng. C 69 (2016) 744-750.
DOI URL |
[11] |
L. Nan, D.K. Xu, T.Y. Gu, X. Song, K. Yang, Mater. Sci. Eng. C 48 (2015) 228-234.
DOI URL |
[12] | Z. Ma, M. Li, R. Liu, L. Ren, Y. Zhang, H.B. Pan, Y. Zhao, K. Yang, J. Mater. Sci. 27 (2016) 91. |
[13] |
B. Bai, E.L. Zhang, J.C. Liu, J.T. Zhu, Dent. Mater. J. 35 (2016) 659-667.
DOI URL |
[14] |
Z.Y. Ke, C.B. Yi, L. Zhang, Z.Y. He, J. Tan, Y.H. Jiang, Mater. Lett. 253 (2019) 335-338.
DOI URL |
[15] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[16] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[17] |
S.L. Wei, S.J. Kim, J.Y. Kang, Y. Zhang, Y.J. Zhang, T. Furuhara, E.S. Park, C.C. Tasan, Nat. Mater. 19 (2020) 1175-1181.
DOI URL |
[18] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
[19] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227.
DOI URL |
[20] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[21] | DIN EN ISO 9227, in: Corrosion Tests in Artificial Atmospheres-Salt Spray Tests, Deutsches Institut für Normung e.V. (DIN), 2006, pp. 1-24. |
[22] |
E.Z. Zhou, D.X. Qiao, Y. Yang, D.K. Xu, Y.P. Lu, J.J. Wang, J.A. Smith, H.B. Li, H.L. Zhao, P.K. Liaw, F.H. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[23] |
Y. Yu, N.N. Xu, S.Y. Zhu, Z.H. Qiao, J.B. Zhang, J. Yang, W.M. Liu, J. Mater. Sci. Technol. 69 (2021) 48-59.
DOI URL |
[24] |
H.T. Zhang, K.W. Siu, W.B. Liao, Q. Wang, Y. Yang, Y. Lu, Mater. Res. Express 3 (2016) 094002.
DOI URL |
[25] |
A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Desh-mukh, T. Shanmugasundaram, Scr. Mater. 161 (2019) 28-31.
DOI URL |
[26] |
J.F. Jiang, M.J. Huang, Y. Wang, G.F. Xiao, Y.Z. Liu, Y. Zhang, J. Alloy Compd. 876 (2021) 160102.
DOI URL |
[27] |
H.J. Wang, Z.Y. Wu, H. Wu, H.G. Zhu, W.C. Tang, Trans. Indian Inst. Met. 74 (2021) 267-272.
DOI URL |
[28] |
Y.K. Kim, B.J. Lee, S.K. Hong, S.I. Hong, Mater. Sci. Eng. A 781 (2020) 139241.
DOI URL |
[29] |
X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (2007) 357-362.
DOI URL |
[30] |
S.M. Oh, S.I. Hong, Mater. Chem. Phys. 210 (2018) 120-125.
DOI URL |
[31] |
A. Shabani, M.R. Toroghinejad, A. Shafyei, R.E. Loge, J. Mater. Eng. Perform. 28 (2019) 2388-2398.
DOI |
[32] |
H. Qiu, H.G. Zhu, J.F. Zhang, Z.H. Xie, Mater. Sci. Eng. A 769 (2020) 138514.
DOI URL |
[33] |
S. Samal, S. Mohanty, A.K. Mishra, K. Biswas, B. Govind, Mater. Sci. Forum 790-791 (2014) 503-508.
DOI URL |
[34] |
C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881-893.
DOI URL |
[35] |
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Eng. A 533 (2012) 107-118.
DOI URL |
[36] |
N. Deng, J. Wang, J.X. Wang, Y.X. He, Z.Y. Lan, R.F. Zhao, E. Beaugon, J.S. Li, Mater. Lett. 285 (2021) 129182.
DOI URL |
[37] |
C. Liu, W.Y. Peng, C.S. Jiang, H.M. Guo, J. Tao, X.H. Deng, Z.X. Chen, J. Mater. Sci. Technol. 35 (2019) 1175-1183.
DOI URL |
[38] |
J.H. Pi, Y. Pan, H. Zhang, L. Zhang, Mater. Sci. Eng. A 534 (2012) 228-233.
DOI URL |
[39] |
L. Nan, Y.Q. Liu, M.Q. Lu, K. Yang, J. Mater. Sci. Mater. Med. 19 (2008) 3057-3062.
DOI URL |
[40] |
H.Y. Zhao, Y.P. Sun, L. Yin, Z. Yuan, Y.L. Lan, D.K. Xu, C.G. Yang, K. Yang, J. Mater. Sci. Technol. 66 (2021) 112-120.
DOI URL |
[41] |
X.R. Zhang, C.G. Yang, K. Yang, ACS Appl. Mater. Interfaces 12 (2020) 361-372.
DOI URL |
[1] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[2] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[3] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[4] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[5] | Bohong Zhang, Jie Chen, Pengfei Wang, Bingtao Sun, Yu Cao. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique [J]. J. Mater. Sci. Technol., 2022, 111(0): 111-119. |
[6] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[7] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[8] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[9] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[10] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[11] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[12] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[13] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[14] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[15] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||