J. Mater. Sci. Technol. ›› 2022, Vol. 117: 183-195.DOI: 10.1016/j.jmst.2021.12.015
• Research Article • Previous Articles Next Articles
M.S. Moylea, N. Haghdadia,*(), X.Z. Liaob,c, S.P. Ringerb,c, S. Primiga,*(
)
Received:
2021-07-06
Revised:
2021-11-18
Accepted:
2021-12-18
Published:
2022-02-19
Online:
2022-08-01
Contact:
N. Haghdadi,S. Primig
About author:
s.primig@unsw.edu.au (S. Primig).M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design[J]. J. Mater. Sci. Technol., 2022, 117: 183-195.
Fig. 1. SEM micrographs showing the 17-4 PH powder used to produce the samples considered in this study. (a) An overview of multiple powder particles, (b) and (c) higher magnification images of typical particles.
Laser Power (W) | Scanning speed (mm s-1) | Hatch Spacing (μm) | Layer height (μm) | Scanning pattern |
---|---|---|---|---|
127.5 | 1200 | 50 | 40 | Hexagonal |
161.5 | 1200 | 50 | 40 | Hexagonal |
127.5 | 1200 | 50 | 40 | Remelting |
127.5 | 1200 | 50 | 40 | Concentric |
Table 1. LPBF processing parameters for the samples considered in this study.
Laser Power (W) | Scanning speed (mm s-1) | Hatch Spacing (μm) | Layer height (μm) | Scanning pattern |
---|---|---|---|---|
127.5 | 1200 | 50 | 40 | Hexagonal |
161.5 | 1200 | 50 | 40 | Hexagonal |
127.5 | 1200 | 50 | 40 | Remelting |
127.5 | 1200 | 50 | 40 | Concentric |
Fig. 2. Schematic diagrams showing the LPBF scanning patterns used to produce the samples in this study. Arrows indicate the laser scanning direction.
Fig. 3. Optical micrographs of the 17-4 PH samples processed by LPBF. (a) Hexagonal high laser power. (b) Hexagonal low laser power, (c) Remelting, (d) Concentric. Red arrows highlight selected melt pool boundaries.
Fig. 4. EBSD IPF maps taken from central regions of the samples analysed in this study. (a, b) Hexagonal, low power, (c, d) Hexagonal, high power, (e, f) Remelting, (g, h) Concentric. In the left column, the build direction (BD) is upwards. In the right column, BD is perpendicular to the page. Colour in these maps indicates crystallographic orientation along the BD for both BCC and FCC regions of the microstructure. Solid black boxes indicate wider epitaxial grains, dotted black lines indicate thin, 〈100〉 // BD oriented epitaxial grains. Area-weighted average BCC grain diameters were evaluated for maps taken normal to the build direction to be (a) 101 μm, (c) 224 μm, (e) 194 μm, (g) 110 μm.
Fig. 5. Corresponding phase maps from the EBSD analysis presented in Fig. 4. Red corresponds to BCC phase. Green corresponds to FCC phase (austenite). The percentages on each map correspond to the Vf of Austenite.
Fig. 6. EBSD pole figures showing the BCC texture for each of the LPBF fabricated samples analysed in this study; (a) Hexagonal-low-power, (b) Hexagonal-high-power, (c) Remelting, (d) Concentric-middle, (e) Concentric-side. The centre of each pole figure corresponds to BD pointing upwards, out of the page. The white arrows in (c) highlight additional peaks which do not fit the otherwise cube texture. Printing strategy schematics for each sample are repeated to the left of each set of pole figures. Red boxes in the schematic diagrams for (d, e) show the regions of the scanning strategy where these texture were observed. The maximum intensity in each set of maps is indicated to the right of the pole figures.
Fig. 7. (a) Secondary electron SEM micrograph from the hexagonal-high-power sample. Yellow arrows indicate austenitic regions within the microstructure. (b) EBSD phase map (0.05 μm step size) showing the distribution of BCC and FCC phase in the sample region. (c, d) IPF maps showing the orientation along the build direction for the (c) BCC and (d) FCC grains in this region. White arrows indicate visible melt pool boundaries.
Scanning Pattern | Laser Power (W) | Hardness (HV) |
---|---|---|
Hexagonal | 127.5 | 358 ± 5 |
Hexagonal | 161.5 | 365 ± 5 |
Remelting | 127.5 | 354 ± 7 |
Concentric | 127.5 | 359 ± 10 |
Table 2. Vickers hardness results for the samples considered in this study.
Scanning Pattern | Laser Power (W) | Hardness (HV) |
---|---|---|
Hexagonal | 127.5 | 358 ± 5 |
Hexagonal | 161.5 | 365 ± 5 |
Remelting | 127.5 | 354 ± 7 |
Concentric | 127.5 | 359 ± 10 |
Fig. 8. Schematic showing texture formation in a single LPBF track. Black arrows show the grain growth directions. Schematic pole figures show the average fibre texture of groups of grains growing from different regions along the MPB. The bottom row shows that the simultaneous presence of all these textures in the melt pool results in a 〈100〉 // SD fibre texture. This figure is a simplified schematic diagram we propose based on the work of Liu et al.. [39].
Fig. 9. Schematic showing multiple laser tracks over a single "tile" region in a mosaic-like microstructure. The red square shows a single “tile”. Grey rectangles show a length of area melted by a single laser pass. Black arrows the direction of scan in a laser track.
Fig. 10. EBSD texture analysis of tile regions in maps taken normal to the build direction. IPF maps show the selected tile regions in the (a) hexagonal high-power sample (d) remelting low-power sample. Pole figures show the corresponding textures from the Hexagonal high-power sample (b) full EBSD scan (c) only from the tile regions, and from the remelting low power sample (e) full EBSD scan (f) only from the tile regions. The maximum intensity values observed anywhere in each set of maps were (b) 3.034, (c) 3.261, (e) 3.687, and (f) 3.967.
Fig. 11. (a) Schematic diagram showing the observed texture in the sample printed with the concentric scanning pattern. (b) BCC IPF map from a region of the microstructure where the scanning direction changes are also shown. The colouring of this map shows grain orientation towards the viewer, normal to the sectioned surface. This map has been cropped into two regions that were melted by different scanning directions. Pole figures showing the corresponding 〈001〉 ferrite textures from each region are also displayed. IPF colouring indicates grain orientation along the “y” direction, as per (a).
[1] | F.H. Froes, R. Boyer, Additive Manufacturing for the Aerospace Industry, Else- vier, 2019. |
[2] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[3] | P. Mohammadpour, A. Plotkowski, A.B. Phillion, Addit. Manuf. 31 (2020) 100936. |
[4] |
P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle, Mater. Sci. Eng. A 772 (2020) 138633.
DOI URL |
[5] |
S. Cheruvathur, E.A. Lass, C.E. Campbell, JOM 68 (2016) 930-942.
DOI URL |
[6] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61 (2016) 315-360.
DOI URL |
[7] | M. Alnajjar, F. Christien, K. Wolski, C. Bosch, Addit. Manuf. 25 (2019) 187-195. |
[8] |
A. Basak, S. Das, Annu. Rev. Mater. Res. 46 (2016) 125-149.
DOI URL |
[9] | J.C. Lippold, Welding Metallurgy and Weldability, Wiley, 2015. |
[10] |
R.R. Dehoff, M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, S.S. Babu, Mater. Sci. Technol. 31 (2015) 931-938.
DOI URL |
[11] |
V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alz- ina, Mater. Des. 114 (2017) 441-449.
DOI URL |
[12] |
C.N. Hsiao, C.S. Chiou, J.R. Yang, Mater. Chem. Phys. 74 (2002) 134-142.
DOI URL |
[13] |
L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, J. Mater. Res. Technol. 1 (3) (2012) 167-177.
DOI URL |
[14] | ASM International Handbook Committee, Heat Treating of Stainless Steels, in: ASM Handbook, Volume 4, Heat Treating, ASM International, 1991, pp. 769-792. |
[15] |
N. Haghdadi, M. Laleh, M. Moyle, S. Primig, J. Mater. Sci. 56 (2020) 64-107.
DOI URL |
[16] | M. Leary, Design for Additive Manufacturing, Elsevier, 2019. |
[17] |
T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi, Mater. Des. 81 (2015) 44-53.
DOI URL |
[18] |
L. Facchini, N. Vicente Jr., I. Lonardelli, E. Magalini, P. Robotti, A. Molinari, Adv. Eng. Mater. 12 (3) (2010) 184-188.
DOI URL |
[19] |
Y. Sun, R.J. Hebert, M. Aindow, Mater. Des. 156 (2018) 429-440.
DOI URL |
[20] |
F. Geiger, K. Kunze, T. Etter, Mater. Sci. Eng. A 661 (2016) 240-246.
DOI URL |
[21] |
T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34-38.
DOI URL |
[22] |
K. Kunze, T. Etter, J. Grässlin, V. Shklover, Mater. Sci. Eng. A 620 (2015) 213-222.
DOI URL |
[23] |
O. Andreau, I. Koutiri, P. Peyre, J.D. Penot, N. Saintier, E. Pessard, T.D. Terris, C. Dupuy, T. Baudin, J. Mater. Process. Technol. 264 (2019) 21-31.
DOI URL |
[24] |
M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, Mater. Sci. Eng. C 62 (2016) 852-859.
DOI URL |
[25] |
L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61 (2013) 1809-1819.
DOI URL |
[26] |
X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, J. Alloy. Compd. 631 (2015) 153-164.
DOI URL |
[27] |
Z. Sun, X. Tan, S.B. Tor, C.K. Chua, NPG Asia Mater. 10 (4) (2018) 127-136.
DOI URL |
[28] | D. Mahmoud, M. Elbestawi, J. Manuf. Mater. Process. 1 (2) (2017) 13. |
[29] |
Y. Li, Z. Feng, L. Hao, L. Huang, C. Xin, Y. Wang, E. Bilotti, K. Essa, H. Zhang, Z. Li, F. Yan, T. Peijs, Adv. Mater. Technol. 5 (2020) 1900981.
DOI URL |
[30] | H.R. Lashgari, C. Kong, E. Adabifiroozjaei, S. Li, Wear 457 (2020) 203367. |
[31] |
G.C. Sneddon, P.W. Trimby, J.M. Cairney, Mater. Sci. Eng. R 110 (2016) 1-12.
DOI URL |
[32] |
A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Int. J. Fatigue 94 (2017) 218-235.
DOI URL |
[33] | S. Vunnam, Saboo A, C. Sudbrack, T.L. Starr, Addit.Manuf. 30(2019)100876. |
[34] |
T. Zhou, H.S. Zurob, E. Essadiqi, B. Voyzelle, Metall. Mater. Trans. A 42 (2011) 3349-3357.
DOI URL |
[35] |
E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, JOM 68 (2016) 943-949.
DOI URL |
[36] |
Y. Wang, C. Yu, L. Xing, K. Li, J. Chen, W. Liu, J. Ma, Z. Shen, J. Mater. Process. Technol. 281 (2020) 116591.
DOI URL |
[37] |
M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 1-12.
DOI URL |
[38] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 1799-1804.
DOI |
[39] | J. Liu, A.C. To, Addit. Manuf. 16 (2017) 58-64. |
[40] | A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater.Charact. 84(2013)153-168. |
[41] |
K. Saeidi, L. Kevetkova, F. Lofaj, Z. Shen, Mater. Sci. Eng. A 665 (2016) 59-65.
DOI URL |
[42] |
P. Fernandez-Zelaia, M.M. Kirka, Mater. Des. 195 (2020) 109010.
DOI URL |
[43] |
Y. Wang, J. Shi, Mater. Charact. 165 (2020) 110372.
DOI URL |
[44] |
S.H. Sun, K. Hagihara, T. Nakano, Mater. Des. 140 (2018) 307-316.
DOI URL |
[45] | J. Romano, L. Ladani, M. Sadowski, Proc. Manuf. 1 (2015) 238-250. |
[1] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[2] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[3] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[4] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[5] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[6] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[7] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[8] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[9] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[10] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[11] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[12] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[13] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[14] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[15] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||