J. Mater. Sci. Technol. ›› 2022, Vol. 108: 186-195.DOI: 10.1016/j.jmst.2021.08.055
• Research Article • Previous Articles Next Articles
Xingjie Jiaa,b, Bojun Zhanga, Wei Zhangb,*(), Yaqiang Donga,c,*(
), Jiawei Lia,c, Aina Hea,c, Run-Wei Lia,c
Received:
2021-05-18
Revised:
2021-07-29
Accepted:
2021-08-11
Published:
2021-10-28
Online:
2021-10-28
Contact:
Wei Zhang,Yaqiang Dong
About author:
dongyq@nimte.ac.cn (Y. Dong).Xingjie Jia, Bojun Zhang, Wei Zhang, Yaqiang Dong, Jiawei Li, Aina He, Run-Wei Li. Direct synthesis of Fe-Si-B-C-Cu nanocrystalline alloys with superior soft magnetic properties and ductile by melt-spinning[J]. J. Mater. Sci. Technol., 2022, 108: 186-195.
Fig. 1. XRD patterns of free side (a), DSC curves (b), bright-field TEM images of central part of the ribbons, corresponding SAED patterns and gain size distributions (c, d) for as-spun Fe83-xSi4B13Cux alloys. (c) x = 0; (d) x = 1.7.
Fig. 3. Bright-field TEM images, corresponding SAED patterns and gain size distributions of different parts (a-d) and their location illustration (e) for as-spun Fe81.3Si4B7C6Cu1.7 alloy. (a) Free side surface; (b) central part; (c) shallow surface in wheel side; (d) wheel side surface.
Fig. 6. Magnetic domain structure of Fe81.3Si4B7C6Cu1.7 alloy in as-spun state and annealed at various temperatures. (a) As-spun; (b) 518 K; (c) 578 K.
Fig. 7. The εf of Fe83-xSi4B13-yCyCux alloys (a), SEM pictures of fracture surface (b) and wheel side surface (c) for as-spun Fe81.3Si4B7C6Cu1.7 nanocrystalline alloy. The inset in (a) shows schematic illustration of the bending tests. The free side of the ribbons in (b) is located at the top of the image.
Fig. 10. Bright-field TEM images, corresponding SAED patterns and gain size distributions of different parts (a-e) and their location illustration (f) for annealed Fe81.3Si4B7C6Cu1.7 alloys. (a) Free side surface, 578 K; (b) central part, 578 K; (c) shallow surface in wheel side, 578 K; (d) wheel side surface, 578 K; (e) wheel side surface, 638 K.
[1] |
G. Herzer, Acta Mater 61 (2013) 718-734.
DOI URL |
[2] |
A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, Mater. Trans. JIM 50 (2009) 204-209.
DOI URL |
[3] |
K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, Mater. Trans. JIM 31 (1990) 743-746.
DOI URL |
[4] |
M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V. G. Harris, J. Appl. Phys. 84 (1998) 6773-6777.
DOI URL |
[5] |
M. Ohta, Y. Yoshizawa, J. Appl. Phys. 103 (2008) 07E722.
DOI URL |
[6] |
A. Makino, T. Kubota, K. Yubuta, A. Inoue, A. Urata, H. Matsumoto, S. Yoshida, J. Appl. Phys. 109 (2011) 07A302.
DOI URL |
[7] |
Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044-6046.
DOI URL |
[8] | Y. Zhang, P. Sharma, A. Makino, IEEE Trans. Magn. 50 (2014) 20 030 04. |
[9] |
A. Makino, IEEE Trans. Magn. 48 (2012) 1331-1335.
DOI URL |
[10] |
K. Suzuki, R. Parsons, B.W. Zang, K. Onodera, H. Kishimoto, A. Kato, Appl. Phys. Lett. 110 (2017) 012407.
DOI URL |
[11] |
B.W. Zang, R. Parsons, K. Onodera, H. Kishimoto, A. Kato, A.C.Y. Liu, K. Suzuki, Scr. Mater. 132 (2017) 68-72.
DOI URL |
[12] | X.D. Fan, T. Zhang, M.F. Jiang, W.M. Yang, B.L. Shen, J. Non-Cryst. Solids 503-504 (2019) 36-43. |
[13] |
M.E. McHenry, M.A. Willard, D.E. Laughlin, Prog. Mater. Sci. 44 (1999) 291-433.
DOI URL |
[14] |
Y. Yoshizawa, Scr. Mater. 44 (2001) 1321-1325.
DOI URL |
[15] |
P. Sharma, X. Zhang, Y. Zhang, A. Makino, Scr. Mater. 95 (2015) 3-6.
DOI URL |
[16] |
Y. Meng, S.J. Pang, C.T. Chang, X.Y. Bai, T. Zhang, J. Magn. Magn. Mater. 523 (2021) 167583.
DOI URL |
[17] |
Y.H. Li, G.Z. Zhang, L.C. Wu, W. Zhang, J. Mater. Sci. 56 (2021) 2572-2583.
DOI URL |
[18] |
L. Xie, A.D. Wang, S.Q. Yue, A.N. He, C.T. Chang, Q. Li, X.M. Wang, C.T. Liu, J. Magn. Magn. Mater. 483 (2019) 158-163.
DOI URL |
[19] | J.H. Zhang, F.P. Wan, Y.C. Li, J.C. Zheng, A.D. Wang, J.C. Song, M.Q. Tian, A.N. He, C. T. Chang, J. Magn. Magn. Mater. 438 (2017) 162-131. |
[20] |
E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, R. Schäfer, Acta Mater 96 (2015) 10-17.
DOI URL |
[21] |
T. Liu, A.N. He, F.Y. Kong, A.D. Wang, Y.Q. Dong, X.M. Wang, H. Zhang, H.W. Ni, Y. Yang, J. Mater. Sci. Technol. 68 (2021) 53-60.
DOI URL |
[22] |
J.G. Wang, H. Zhao, C.X. Xie, C.T. Chang, S.M. Zhou, J.Q. Feng, J.T. Huo, W.H. Li, J. Alloys Compd. 790 (2019) 524-528.
DOI URL |
[23] |
K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Acta Mater 47 (1999) 997-1006.
DOI URL |
[24] |
M. Matsuura, M. Nishijing, K. Takenaka, A. Takeuchi, H. Ofuchi, A. Makino, J. Appl. Phys. 117 (2015) 17A324.
DOI URL |
[25] | M. Ohta, Y. Yoshizawa, Jpn. J. Appl. Phys. 46 (2007) L477-L479. |
[26] |
L.X. Shi, K.F. Yao, Mater. Des. 189 (2020) 108511.
DOI URL |
[27] | L. Shi, X. Qin, K. Yao, Prog. Nat. Sci. Mater. 30 (2020) 208-212. |
[28] |
Y.Q. Xu, Y.H. Li, Z.W. Zhu, W. Zhang, J. Non-Cryst. Solids 487 (2018) 60-64.
DOI URL |
[29] |
Y.H. Li, W. Zhang, T.L. Qi, J. Alloys Compd. 693 (2017) 25-31.
DOI URL |
[30] |
Y. Wu, X.D. Hui, Z.P. Lu, Z.Y. Liu, L. Liang, G.L. Chen, J. Alloys Compd. 467 (2009) 187-190.
DOI URL |
[31] |
W. Li, Y.H. Yang, C.X. Xie, Y.Z. Yang, H.Y. Liu, K.W. Wang, Z.L. Liao, J. Magn. Magn. Mater. 498 (2020) 166128.
DOI URL |
[32] |
X.J. Jia, Y.H. Li, L.C. Wu, W. Zhang, J. Alloys Compd. 822 (2020) 152784.
DOI URL |
[33] | X.J. Jia, Y.H. Li, L.C. Wu, Y. Zhang, L. Xie, W. Zhang, J. Mater. Sci. 54 (2019) 4 400-4 408. |
[34] |
Y.H. Li, X.J. Jia, Y.Q. Xu, C.T. Chang, G.Q. Xie, W. Zhang, J. Alloys Compd. 722 (2017) 859-863.
DOI URL |
[35] |
C. Wu, H.P. Chen, H.P. Lv, M. Ya, J. Alloys Compd. 673 (2016) 278-282.
DOI URL |
[36] |
P. Allia, J. Appl. Phys. 74 (1993) 3137-3143.
DOI URL |
[37] |
W.L. Liu, Y.G. Wang, F.G. Chen, J. Mater. Sci. -Mater. Electron. 25 (2014) 5066-5070.
DOI URL |
[38] |
Y.H. Li, X.J. Jia, W. Zhang, Y. Zhang, G.Q. Xie, Z.Y. Qiu, J.H. Luan, Z.B. Jiao, J. Mater. Sci. Technol. 65 (2021) 171-181.
DOI URL |
[39] | Y.M. Chen, T. Ohkubob, M. Ohta, Y. Yoshizawa, K. Hono, Acta Mater 57 (2009) 4 463-4 472. |
[40] |
S. Jafari, A. Beitollahi, B. E.Yekta, T. Ohkubo, V. Budinsky, M. Marsilius, G. Herzer, K. Hono, J. Alloys Compd. 674 (2016) 136-144.
DOI URL |
[41] |
Y. Wu, H.X. Li, J.E. Gao, H. Wang, X.J. Liu, M.K. Miller, H. Bei, Y.F. Gao, Z.P. Lu, J. Alloys Compd. 688 (2016) 822-827.
DOI URL |
[42] |
A. Takeuchi, A. Inoue, Mater. Trans. JIM 46 (2005) 2817-2829.
DOI URL |
[43] |
O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36 (2001) 2183-2198.
DOI URL |
[44] |
A. Inoue, Acta Mater 48 (20 0 0) 279-306.
DOI URL |
[45] |
A.V. Evteev, A.T. Kosilov, E.V. Levtchenko, Acta Mater 51 (2003) 2665-2674.
DOI URL |
[46] |
M. Ohta, Y. Yoshizawa, J. Magn. Magn. Mater. 321 (2009) 2220-2224.
DOI URL |
[47] |
L. Hou, X.D. Fan, W.M.Yang Q.Q.Wang, B.L. Shen, J. Mater. Sci. Technol. 35 (2019) 1655-1661.
DOI URL |
[48] |
W. Zhang, X.J. Jia, Y.H. Li, C.F. Fang, J. Appl. Phys. 115 (2014) 17A768.
DOI URL |
[49] |
G. Herzer, IEEE Trans. Magn. 26 (1990) 1397-1402.
DOI URL |
[50] |
G. Herzer, J. Magn. Magn. Mater. 294 (2005) 99-106.
DOI URL |
[51] |
M. Tejedor, J.A. GarcmHa, J. Carrizo, L. Elbaile, J.D. Santos, J. Magn. Magn. Mater. 202 (1999) 4 85-4 91.
DOI URL |
[52] |
F.E. Luborsky, J.L. Walter, J. Appl. Phys. 47 (1976) 1276-1281.
DOI URL |
[53] |
R. Sahingoz, M. Erol, M.R.J. Gibbs, J. Magn. Magn. Mater. 271 (2004) 74-78.
DOI URL |
[54] | P.B. Chen, A.D. Wang, C.L. Zhao, A.N. He, G. Wang, C.T. Chang, X.M. Wang, C. T. Liu, Sci. China Phys. Mech. 60 (2017) 1-6. |
[55] |
P.B. Chen, T. Liu, F.Y. Kong, A.D. Wang, C.Y. Yu, C.T.Chang G.Wang, X.M. Wang, J. Mater. Sci. Technol. 34 (2018) 793-798.
DOI URL |
[56] |
F.L. Schafer, A. Hubert, G. Herzer, J. Appl. Phys. 69 (1991) 5325.
DOI URL |
[57] |
H. Kronmüller, M. Fähnle, M. Domann, H. Grimm, R. Grimm, B. Gröger, J. Magn. Magn. Mater. 13 (1979) 53-70.
DOI URL |
[58] |
X.H. Zhang, Y.Q. Dong, A.N. He, L. Xie, F.S. Li, L. Chang, H.Y. Xiao, H. Li, T. Wang, J. Magn. Magn. Mater. 506 (2020) 166757.
DOI URL |
[59] |
T.M. Heil, K.J. Wahl, A.C. Lewis, J.D. Mattison, M.A. Willard, Appl. Phys. Lett. 90 (2007) 212508.
DOI URL |
[60] |
T.M. Heil, M.A. Willard, J.J. Flores, J. Appl. Phys. 101 (2007) 09N107.
DOI URL |
[61] |
I. Skorvanek, R. Gerling, J. Appl. Phys. 72 (1992) 3417.
DOI URL |
[62] |
M. Daniil, P.R. Ohodnicki, M.E. McHenry, M.A. Willard, Philos. Mag. 90 (2010) 1547-1565.
DOI URL |
[1] | Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten [J]. J. Mater. Sci. Technol., 2022, 105(0): 242-258. |
[2] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
[3] | Boon Teoh Tan, Shunnian Wu, Franklin Anariba, Ping Wu. A DFT study on brittle-to-ductile transition of D022-TiAl3 using multi-doping and strain-engineered effects [J]. J. Mater. Sci. Technol., 2020, 51(0): 180-192. |
[4] | J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 1877-1885. |
[5] | Cui Junjun, Chen Liqing. Microstructure and abrasive wear resistance of an alloyed ductile iron subjected to deep cryogenic and austempering treatments [J]. J. Mater. Sci. Technol., 2017, 33(12): 1549-1554. |
[6] | Han X.B.,Qian Y.,Liu W.,Chen D.M.,Yang K.. Effect of Preparation Technique on Microstructure and Hydrogen Storage Properties of LaNi3.8Al1.0Mn0.2 Alloys [J]. J. Mater. Sci. Technol., 2016, 32(12): 1332-1338. |
[7] | Yunlong Bai,Yikun Luan, Nannan Song, Xiuhong Kang, Dianzhong Li, Yiyi Li. Chemical Compositions, Microstructure and Mechanical Properties of Roll Core used Ductile Iron in Centrifugal Casting Composite Rolls [J]. J. Mater. Sci. Technol., 2012, 28(9): 853-858. |
[8] | J. Duy, M. Strangwood, C.L. Davis. Effect of TiN Particles and Grain Size on the Charpy Impact Transition Temperature in Steels [J]. J. Mater. Sci. Technol., 2012, 28(10): 878-888. |
[9] | Bijan Abbasi-Khazaei, Saeid Ghaderi. A Novel Process in Semi-Solid Metal Casting [J]. J. Mater. Sci. Technol., 2012, 28(10): 946-950. |
[10] | G.S.Cho, K.H.Choe, K.W.Lee, A.Ikenaga. Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron [J]. J Mater Sci Technol, 2007, 23(01): 97-101. |
[11] | A.Cherouat, H.Borouchaki, K.Saanouni, P.Laug. Numerical Methodology for Metal Forming Processes Using Elastoplastic Model with Damage Occurrence [J]. J Mater Sci Technol, 2006, 22(02): 279-283. |
[12] | Guangye ZHANG, Xinghao DU, Jianting GUO, Hengqiang YE. BDT and Creep Behaviors of NiAl-25 at. pct Cr Alloy at Various Temperatures [J]. J Mater Sci Technol, 2005, 21(05): 641-646. |
[13] | Shihai GUO, Yanghuan ZHANG, Jianliang LI, Baiyun QUAN, Yan QI, Xinlin WANG. Martensitic Transformation and Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon [J]. J Mater Sci Technol, 2005, 21(02): 211-214. |
[14] | Zhenhua LI, Yanxiang LI, Huiyuan GENG, Jianjun CHEN, Chunyan ZHOU, Junfa CHEN. Study on Thermal Simulation of Solidification in Heavy Section Ductile Iron [J]. J Mater Sci Technol, 2003, 19(Supl.): 122-124. |
[15] | Yuying YANG, Zhongqi YU, Xuechun LI, Zhenzhong SUN. A New Ductile Fracture Criterion and Its Application to the Prediction of Forming Limit in Deep Drawing [J]. J Mater Sci Technol, 2003, 19(Supl.): 217-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||