J. Mater. Sci. Technol. ›› 2022, Vol. 108: 196-207.DOI: 10.1016/j.jmst.2021.07.056
• Research Article • Previous Articles Next Articles
Jun Wei Chuaa, Xinwei Lia, Tao Lib, Beng Wah Chuab, Xiang Yuc,*(), Wei Zhaia,*(
)
Received:
2021-04-21
Revised:
2021-07-18
Accepted:
2021-07-20
Published:
2021-10-28
Online:
2021-10-28
Contact:
Xiang Yu,Wei Zhai
About author:
mpezwei@nus.edu.sg (W. Zhai).Jun Wei Chua, Xinwei Li, Tao Li, Beng Wah Chua, Xiang Yu, Wei Zhai. Customisable sound absorption properties of functionally graded metallic foams[J]. J. Mater. Sci. Technol., 2022, 108: 196-207.
Fig. 1. Overview of the template replication technique. The polymer template foam is immersed in the metal slurry to fully coat the struts. The excess slurry is removed by repeated compression. The green bodies are then dried and sintered to form the metal foam.
Fig. 3. SEM images of PU template foam and the corresponding metal foam for (a) PPI 45, (b) PPI 60, (c) PPI 80. Notice the similar pore morphology between the PU and metallic foam for the same PPI. The pore sizes for the metallic foam are smaller than that of the respective PU foams.
Fig. 4. SEM images of the boundary between two metallic foam layers of different PPI: (a) PPI 45 and PPI 80, (b) PPI 80 and PPI 60, (c) PPI 60 and PPI 45. By layering the PU green bodies together before sintering, the particles on the struts at the boundary may bond together, such that the adjacent layers are sintered together.
PPI | Porosity (%) | Flow Resistivity ( |
---|---|---|
45 | 97.0 | 996 |
60 | 93.7 | 4968 |
80 | 92.9 | 7363 |
Table 1. Calculated porosities and airflow resistivities of metallic foams of different PPI.
PPI | Porosity (%) | Flow Resistivity ( |
---|---|---|
45 | 97.0 | 996 |
60 | 93.7 | 4968 |
80 | 92.9 | 7363 |
Fig. 5. Sound absorption coefficient curves (experimental and TMM predictions) for metallic foam: (a) PPI 80, (b) PPI 60-45 and (c) PPI 60-80-45. The observed experimental and predicted curves are close to each other, suggesting that the method in Section 2.4 was adequate in predicting the sound absorption coefficients of functionally graded metallic foam in this study.
Fig. 6. Sound absorption coefficient distribution of metallic foam of one pore size with different pore sizes for thicknesses of (a) 20 mm; (b) 40 mm; and (c) 60 mm, respectively.
Fig. 7. Phasor representation diagram of the impedance of metallic foam of one pore size with different pore sizes for thicknesses of (a) 20 mm; (b) 40 mm; and (c) 60 mm, respectively. The dotted lines represent ellipses with constant absorption coefficients.
Fig. 8. Sound absorption coefficient distribution of metallic foam of one pore size with different thicknesses for (a) PPI 45; (b) PPI 60; and (c) PPI 80, respectively.
Fig. 9. Plots of average sound absorption coefficient between 1000 and 5000 Hz with varying thicknesses for PPI 45, 60 and 80. Generally, the average sound absorption increases with increasing thickness or decreasing pore size.
Fig. 10. Sound absorption coefficient of functionally graded metallic foam of thickness 40 mm with different layer arrangements for (a) PPI 45 and 60; (b) PPI 45 and 80; (c) PPI 60 and 80. Marked in a cross in each figure is the intersection points between the two curves.
Fig. 11. (a) Sound absorption coefficient distribution of the functionally graded metallic foam of thickness 40 mm for PPI 45 and 80, calculated from DB and TMM models for frequencies below 6000 Hz. (b) Plots of Eq. (26) with frequency. Notice the closeness in intersection points with the line $\text{ }\!\!\Delta\!\!\text{ }\alpha =0$.
Fig. 12. Sound absorption coefficient distribution of functionally graded metallic foam of thickness 60 mm with different layer arrangements for (a) PPI 45 (2 layers) and 60 (1 layer); (b) PPI 45 (2 layers) and 80 (1 layer); (c) PPI 60 (2 layers) and 45 (1 layer); (d) PPI 60 (2 layers) and 80 (1 layer); (e) PPI 80 (2 layers) and 45 (1 layer); (f) PPI 80 (2 layers) and 60 (1 layer).
Fig. 13. Sound absorption coefficient distribution of functionally graded metallic foam of thickness 60 mm with different layer arrangements for PPI 45, 60 and 80, each of thickness 20 mm.
PPI | Average of | Standard deviation of | |||||
---|---|---|---|---|---|---|---|
Layer 1 | Layer 2 | Layer 3 | 1000-2000 Hz | 2000-4000 Hz | 4000-5000 Hz | Overall | |
45 | 60 | 80 | 0.89070 | 0.92255 | 0.92286 | 0.91467 | 0.03500 |
45 | 80 | 60 | 0.91064 | 0.92812 | 0.91026 | 0.91929 | 0.02755 |
60 | 45 | 80 | 0.92126 | 0.89240 | 0.88771 | 0.89844 | 0.06635 |
60 | 80 | 45 | 0.95100 | 0.88894 | 0.93403 | 0.91572 | 0.04704 |
80 | 45 | 60 | 0.92992 | 0.84724 | 0.95578 | 0.89504 | 0.07625 |
80 | 60 | 45 | 0.95085 | 0.86747 | 0.94296 | 0.90719 | 0.06408 |
Table 2. Average and standard deviation data for cases in Fig. 13.
PPI | Average of | Standard deviation of | |||||
---|---|---|---|---|---|---|---|
Layer 1 | Layer 2 | Layer 3 | 1000-2000 Hz | 2000-4000 Hz | 4000-5000 Hz | Overall | |
45 | 60 | 80 | 0.89070 | 0.92255 | 0.92286 | 0.91467 | 0.03500 |
45 | 80 | 60 | 0.91064 | 0.92812 | 0.91026 | 0.91929 | 0.02755 |
60 | 45 | 80 | 0.92126 | 0.89240 | 0.88771 | 0.89844 | 0.06635 |
60 | 80 | 45 | 0.95100 | 0.88894 | 0.93403 | 0.91572 | 0.04704 |
80 | 45 | 60 | 0.92992 | 0.84724 | 0.95578 | 0.89504 | 0.07625 |
80 | 60 | 45 | 0.95085 | 0.86747 | 0.94296 | 0.90719 | 0.06408 |
[1] | M. Ashby, T. Evans, N.A. Fleck, Metal Foams: A Design Guide, Elsevier, Burling- ton, 20 0 0. |
[2] |
T.J. Lu, A. Hess, M.F. Ashby, J. Appl. Phys. 85 (1999) 7528-7539.
DOI URL |
[3] |
X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, Y. Liu, J. Mater. Sci. Technol. 33 (2017) 1227-1234.
DOI URL |
[4] |
F. Paun, S. Gasser, L. Leylekian, Aerosp. Sci. Technol. 7 (2003) 63-72.
DOI URL |
[5] | S. Kalpakjian, S.R. Schmid, Manufacturing Engineering And Technology, 7th ed., SI Units, Pearson Education South Asia Pte Ltd., 2013. |
[6] |
C. Greiner, S.M. Oppenheimer, D.C. Dunand, Acta Biomater. 1 (2005) 705-716.
DOI URL |
[7] | R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge Univer-sity Press, Cambridge, 2006. |
[8] |
S. Suethao, D.U. Shah, W. Smitthipong, Materials 13 (2020) 4060 Basel.
DOI URL |
[9] |
G. Kırmızı, H. Arık, H. Çinici, Compos. Part B Eng. 164 (2019) 345-357.
DOI URL |
[10] |
H. Liu, S. Ding, B.F. Ng, Compos. Part B Eng. 172 (2019) 516-532.
DOI URL |
[11] |
J.H. Oh, J.S. Kim, V.H. Nguyen, I.K. Oh, Compos. Part B Eng. 186 (2020) 107817.
DOI URL |
[12] | O. Doutres, N. Atalla, Int. Congr. Expo. Noise Control Eng. 2012 INTER-NOISE 2012 5 (2012) 3737-3746. https://www.researchgate.net/publication/286661909_Sound_absorption_properties_of_functionally_graded_polyurethane_Foams. |
[13] | N. Zhang, T. Khan, H. Guo, S. Shi, W. Zhong, W. Zhang, Adv. Mater. Sci. Eng. 2019 (2019) 1-18. |
[14] |
S.G. Mosanenzadeh, H.E. Naguib, C.B. Park, N. Atalla, J. Mater. Sci. 50 (2015) 1248-1256.
DOI URL |
[15] |
N.S.K. Ho, P. Li, S. Raghavan, T. Li, Mater. Sci. Eng. A 687 (2017) 123-130.
DOI URL |
[16] | M.A. Azizan, N.A.M. Salleh, M.H. Ismail, V.D. Natarajan, Int. J. Eng. 7 (2018) 171-175. |
[17] |
T. Wan, Y. Liu, C. Zhou, X. Chen, Y. Li, J. Mater. Sci. Technol. 62 (2021) 11-24.
DOI URL |
[18] | D. Yang, J. Chen, W. Chen, L. Wang, H. Wang, J. Jiang, A. Ma, J. Mater. Sci. Tech- nol. 33 (2017) 1141-1146. |
[19] |
Y. Li, Z. Feng, L. Hao, L. Huang, C. Xin, Y. Wang, E. Bilotti, K. Essa, H. Zhang, Z. Li, F. Yan, T. Peijs, Adv. Mater. Technol. 5 (2020) 1900981.
DOI URL |
[20] |
K.C. Opiela, T.G. Zieli ´nski, Compos. Part B Eng. 187 (2020) 107833.
DOI URL |
[21] | D.K. Rajak, M. Gupta, An Insight into Metal Based Foams: Processing, Proper-ties and Applications, Springer Singapore, Singapore, 2020. |
[22] |
A. Manonukul, M. Tange, P. Srikudvien, N. Denmud, P. Wattanapornphan, Powder Technol. 266 (2014) 129-134.
DOI URL |
[23] |
P. Quadbeck, K. Kümmel, R. Hauser, G. Standke, J. Adler, G. Stephani, B. Kieback, Adv. Eng. Mater. 13 (2011) 1024-1030.
DOI URL |
[24] |
W. Zhai, X. Yu, X. Song, L.Y.L. Ang, F. Cui, H.P. Lee, T. Li, Mater. Des. 137 (2018) 108-116.
DOI URL |
[25] |
X. Yu, Z. Lu, W. Zhai, Acta Mater. 206 (2021) 116666.
DOI URL |
[26] |
T.Y. Lim, W. Zhai, X. Song, X. Yu, T. Li, B.W. Chua, F. Cui, Mater. Sci. Eng. A 772 (2020) 138798.
DOI URL |
[27] | Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes. - Part 2: Transfer-function method, British Standards Insti- tution, 1998 BS EN ISO 10534-2:2001. |
[28] | J.F. Allard, N. Atalla, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd ed., Wiley, Hoboken, N.J, 2009. |
[29] |
M.E. Delany, E.N. Bazley, Appl. Acoust. 3 (1970) 105-116.
DOI URL |
[30] |
A.J. Otaru, Met. Mater. Int. 26 (2020) 915-932.
DOI |
[31] |
L. Cao, Q. Fu, Y. Si, B. Ding, J. Yu, Compos. Commun. 10 (2018) 25-35.
DOI URL |
[32] |
K. Verdiere, R. Panneton, S. Elkoun, T. Dupont, P. Leclaire, J. Acoust. Soc. Am. 134 (2013) 4648.
DOI URL |
[33] |
J.H. Jeon, S.S. Yang, Y.J. Kang, Appl. Acoust. 169 (2020) 107476.
DOI URL |
[34] | E. Kreyszig, Advanced Engineering Mathematics, 10th ed.,International Stu- dent Version, Wiley, 2011. |
[35] |
F. Han, G. Seiffert, Y. Zhao, B. Gibbs, J. Phys. Appl. Phys. 36 (2003) 294-302.
DOI URL |
[36] |
H. Ke, Y. Donghui, H. Siyuan, H. Deping, J. Phys. Appl. Phys. 44 (2011) 365405.
DOI URL |
[37] |
J.G. Fourie, J.P. Du Plessis, Chem. Eng. Sci. 57 (2002) 2781-2789.
DOI URL |
[38] | Y.H. Kim, Sound Propagation-An Impedance Based Approach, John Wiley and Sons (Asia) Pte.Ltd., 2010. |
[39] | M. Möser, Engineering Acoustics, Springer, 2009. |
[40] | Acoustics-Materials for acoustical applications-Determination of airflow resistance, British Standards Institution, 1993 BS ISO 13314:2011. |
[41] |
L. Jaouen, E. Gourdon, P. Gle, J. Acoust. Soc. Am. 148 (4) (2020) 1998-2005.
DOI PMID |
[42] |
R. Panneton, X. Olny, J. Acoust. Soc. Am. 119 (2006) 2027-2040.
PMID |
[43] |
N. Gao, L. Tang, J. Deng, K. Lu, H. Hou, K. Chen, Appl. Acoust. 175 (2021) 107845.
DOI URL |
[44] | Porous Absorber, COMSOL, Sweden, 2018 https://www.comsol.com/model/porous-absorber-12269files/759/porous-absorber-12269.html. |
[45] |
N. Gao, B. Wang, K. Lu, H. Hou, Appl. Acoust. 178 (2021) 107969.
DOI URL |
[46] |
N. Gao, M. Wang, B. Cheng, H. Hou, Appl. Acoust. 180 (2021) 108153.
DOI URL |
[1] | Xia Xingchuan, Zhang Zan, Zhao Weimin, Li Chong, Ding Jian, Liu Chenxi, Liu Yongchang. Acoustic properties of closed-cell aluminum foams with different macrostructures [J]. J. Mater. Sci. Technol., 2017, 33(11): 1227-1234. |
[2] | Mengyin Liu, Xinjian Xie, Lei Chen, Xuewei Wang, Yahui Cheng, Feng Lu, Wei-Hua Wang, Jing Yang, Xiwen Du, Junda Zhu, Haitao Liu, Hong Dong, Weichao Wang, Hui Liu. A Rational Design of Heterojunction Photocatalyst CdS Interfacing with One Cycle of ALD Oxide [J]. J. Mater. Sci. Technol., 2016, 32(6): 489-495. |
[3] | Bokhyun KANG, Kiyoung KIM, Byungmin LEE, Jaesoo NOH. Heat Transfer and Acoustic Properties of Open Cell Aluminum Foams [J]. J Mater Sci Technol, 2008, 24(01): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||