J. Mater. Sci. Technol. ›› 2022, Vol. 108: 208-225.DOI: 10.1016/j.jmst.2021.08.053
• Research Article • Previous Articles Next Articles
Rohit Kumara, Pankaj Raizadaa, Aftab Aslam Parwaz Khanb,c, Van-Huy Nguyend,*(), Quyet Van Lee, Suresh Ghotekarf,g, Rangabhashiyam Selvasembianh, Vimal Gandhii, Archana Singhj, Pardeep Singha,*(
)
Received:
2021-06-23
Revised:
2021-08-03
Accepted:
2021-08-07
Published:
2021-10-24
Online:
2021-10-24
Contact:
Van-Huy Nguyen,Pardeep Singh
About author:
pardeepchem@gmail.com (P. Singh).Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications[J]. J. Mater. Sci. Technol., 2022, 108: 208-225.
Fig. 2. (a) Schematic illustration of photocatalysis. Reprinted with permission from Elsevier (License No. 5055350491484) [3] (b) Graphical representation of selected articles for literature review from 2010 to 2021 (data collected from Scopus), using the keyword “BiPO4 + photocatalyst”.
Fig. 3. (a) Three different crystal phases of BiPO4 photocatalyst. SEM images of crystal phases of BiPO4 photocatalyst prepared by the hydrothermal method: (b) HBPO (c) nMBPO and (d) mMBPO. Reprinted with permission from the Royal Society of Chemistry (Order License ID 1115537-1) [54]. SEM images of BiPO4 photocatalyst synthesized by the solvothermal method: (e) H-BPO, (f) M/H-BPO, and (g) M-BPO. Reprinted with permission from Elsevier (License No. 5056611084560) [57].
Fig. 4. (a) Energy band dispersion and (b) density of states of BPO based on DFT calculations. Reprinted with permission from Elsevier (License No. 5058741121464) [58].
Fig. 5. SEM images of different morphologies of BPO: (a) fibers, reprinted with permission from American Chemical Society, copyright 2014 [66], (b) nano-cocoons, reprinted with permission from Elsevier (License No. 5055310520973) [63], (c) sheet-like, reprinted with permission from Royal Society of Chemistry (Order license ID 1115542-1) [68] (d) Flower-like microspheres, reprinted with permission from Royal Society of Chemistry (Order license ID 1114132-1) [64] (e) Urchin-like, reprinted with permission from American Chemical Society, copyright 2008 [70], (f) Nanorods, reprinted with permission from Elsevier (License No. 5055331356753) [65], (g) nano-wires, reprinted with permission from American Chemical Society, copyright 2007 [67], (h) needle-like, reprinted with permission from Elsevier (License No. 5055341122652) [39] and (i) dendrites, reprinted with permission from Royal Society of Chemistry (Order license ID 1114128-1) [71].
Morphology | Pollutant | Light | Photocatalyst/ pollutant dose | Efficiency | Refs. |
---|---|---|---|---|---|
Flower like | Rhodamine B | Ultraviolet | 100 mg in 100 mL/ 5 mg/L | 94% in 60 min | [ |
Nanocubes | Rhodamine B | Visible light (420 nm) | 100 mg in 100 mL/ 5 mg/L | ∼70% in 120 min | [ |
Nano particles | Methyl Orange | Sun light | 100 mg in 100 mL/ 10 mg/L | ∼100% in 80 min | [ |
Six branch dendrites | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 72.8% in 40 min | [ |
Snowflake dendrites | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 45.9% in 40 min | [ |
Cubes | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 35.1% in 40 min | [ |
Table. 1. Comparison of efficiencies of some of the morphologies of BiPO4 for the degradation of different pollutants.
Morphology | Pollutant | Light | Photocatalyst/ pollutant dose | Efficiency | Refs. |
---|---|---|---|---|---|
Flower like | Rhodamine B | Ultraviolet | 100 mg in 100 mL/ 5 mg/L | 94% in 60 min | [ |
Nanocubes | Rhodamine B | Visible light (420 nm) | 100 mg in 100 mL/ 5 mg/L | ∼70% in 120 min | [ |
Nano particles | Methyl Orange | Sun light | 100 mg in 100 mL/ 10 mg/L | ∼100% in 80 min | [ |
Six branch dendrites | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 72.8% in 40 min | [ |
Snowflake dendrites | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 45.9% in 40 min | [ |
Cubes | Methylene Blue | Ultraviolet | 100 mg in 200 mL/ 8 mg/L | 35.1% in 40 min | [ |
Pollutant | Light | Photocatalyst/ pollutant dose | Efficiency | Refs. |
---|---|---|---|---|
Carbamazepine | Ultraviolet | 200 mg in 200 mL/ 5 mg/L | 72.4% in 60 min | [ |
Phenol | Ultraviolet | 50 mg in 100 mL/ 5 mg/L | ∼100% in 90 min | [ |
Rhodamine B | Ultraviolet | 100 mg in 100 mL/ 5 × 106 M | ∼79% in 4 h | [ |
Methylene Blue | Ultraviolet | 50 mg in 50 mL/ 10 ppm | 72.4% in 60 min | [ |
Methyl Orange | Ultraviolet | 100 mg in 100 mL/ 10 mg/L | ∼100% in 80 min | [ |
Benzene | Ultraviolet | 200/ 250 ppm, 30 mL/min | 100% in 100 min | [ |
Table. 2. Photocatalytic activity of BiPO4 against different pollutants.
Pollutant | Light | Photocatalyst/ pollutant dose | Efficiency | Refs. |
---|---|---|---|---|
Carbamazepine | Ultraviolet | 200 mg in 200 mL/ 5 mg/L | 72.4% in 60 min | [ |
Phenol | Ultraviolet | 50 mg in 100 mL/ 5 mg/L | ∼100% in 90 min | [ |
Rhodamine B | Ultraviolet | 100 mg in 100 mL/ 5 × 106 M | ∼79% in 4 h | [ |
Methylene Blue | Ultraviolet | 50 mg in 50 mL/ 10 ppm | 72.4% in 60 min | [ |
Methyl Orange | Ultraviolet | 100 mg in 100 mL/ 10 mg/L | ∼100% in 80 min | [ |
Benzene | Ultraviolet | 200/ 250 ppm, 30 mL/min | 100% in 100 min | [ |
Fig. 6. (a) Illustrative mechanism of degradation of phenol by BPO, reprinted with permission from Elsevier (License No. 5055350542618) [47] (b) Representation of various defects in a photocatalyst lattice, reprinted with permission from Elsevier (License No. 5055350078927) [83] and (c) & (d) formation of oxygen vacancy state near the valance band of photocatalyst, reprinted with permission from Royal Society of Chemistry (Order license ID 1114143-1) [90]. (e) Comparison of ESR spectra of BPO prepared at 140 ?C by solvothermal method (S-BPO) and BPO prepared after calcination at 140 ?C (C-BPO), reprinted with permission from Royal Society of Chemistry (Order license ID 1114138-1) [91]. (f) schematic illustration of comparison of bulk BPO with carbon-doped BPO, reprinted with permission from Elsevier (License No. 5055341090322) [97].
Fig. 7. (a) Illustration of bending of bands near the junction formed between the two p & n-type semiconductor photocatalysts, reprinted with permission from John Wiley and Sons (Order No. 501649523) [99]. (b), (c) and (d) Representation of three different types of heterojunction formed between two semiconductor photocatalysts, (e) Illustrative representation of charge transfer mechanism of type-II heterojunction, and (f) Z-scheme heterojunction, reprinted with permission from Elsevier (License No. 5055340726810) [3].
Fig. 8. (a) Illustrative representation of charge migration on BiOBr/BiPO4 photocatalyst. (b) PL intensities of pure BPO and BiOBr/BiPO4 composite prepared with different mole percentages of BiOBr. (c) Comparison of EIS spectra of BiPO4, BiOBr and 50% BiOBr/BiPO4. (d) EIS spectra of BiOBr/BiPO4 under dark and in light. Reprinted with permission from Elsevier (License No. 5055340584287) [101].
Fig. 9. (a) EIS spectra of BiPO4 and GCN/BPO photocatalyst, reprinted with permission from Elsevier (License No. 5055340392219) [102]. (b) The illustrative representation of Z-scheme with shuttle redox mediator, reprinted with permission from John Wiley and Sons (License No. 5055340110609) [110]. (c) The schematic representation of charge transfers and crystal structure of BWO/BPO, reprinted with permission from Elsevier (License No. 5055331376383) [114]. (d) The illustrative mechanism of charge transfers and Cr(VI) degradation via binary BiPO4/Bi2S3 photocatalyst. Reprinted with permission from Elsevier (License No. 5120740453509) [103].
Fig. 10. (a) Proposed mechanism of z-scheme BiPO4/BiOCl0.9I0.1 photocatalyst, reprinted with permission from Elsevier (License No. 5055331225110) [115]. (b) Possible reaction mechanism and charge transfer mechanism in Au-Pd-BPO, reprinted with permission from Elsevier (License No. 5055331078645) [118]. (c) Proposed mechanism for NO degradation over BPO photocatalyst, reprinted with permission from Elsevier (License No. 5058170418905) [123]. (d) & (e) Comparison of junctions and mechanism of charge transfer is SPR and Schottky junction, reprinted with permission from Elsevier (License No. 5055330841227) [124].
Fig. 11. Comparison of degradation efficiency (a) and (c) and reaction kinetics (b) and (d) of TC-BPO & BPO. Reprinted with permission from Elsevier (License No. 5058171305613) [125].
Fig. 12. (a) Crystal composition of BPO at different temperatures. (b) Rate constants of BPO to varying temperatures for the degradation of MB. Charge migration mechanism of (c) HBPO-nMBPO and (d) nMBPO-mMBPO phase junction. Reprinted with permission from Elsevier (License No. 5055330459474) [126].
Photocatalyst | Engineering strategy | Improvement in properties | Target pollutant | Photocatalyst/pollutant concentration | Light source | Efficiency | Refs. |
---|---|---|---|---|---|---|---|
BiPO4 | Facets engineering (002) | More saturated atoms to adsorb pollutants, increased redox ability | Methylene blue | 100 mg/100 mL of 8 mg L-1 | Visible Light | 72.8% in 40 minutes | [ |
BiPO4 | Oxygen vacancies | Enhanced photocurrent, altered bandgap & enhanced light absorption, enhanced charge separation | Methylene blue | 25 mg/ 50 mL of 10-5 M | UV light | ∼65% in 50 minutes | [ |
C-doped BiPO4 | Non-metal doping | Enhanced charge separation, upshift the top of valance band, enhanced light absorption | 4-Chlorophenol | 30 mg/ 100 mL of 10 mg L-1 | UV light | 82.7% in 120 minutes | [ |
Yb3+ doped BiPO4 | Metal doping | Improved charge separation, downshift the conduction band minima, enhanced light absorption | Rhodamine B | 0.05 mg/ 50 mL of 5 mg L-1 | Sun light | 94.6% in 120 minutes | [ |
BiPO4/BiWO6 | Binary heterojunction | Enhanced charge separation, increased charge transfer | Rhodamine B | 50 mg/ 50 mL of 10 mg L-1 | Visible light | 92% in 100 minutes | [ |
BiVO4/BiPO4/graphene oxide | Ternary heterojunction | Improved adsorption of pollutants, enhance charge separation, good charge transfer | Reactive blue-19 | 30 mg / 50 mL of 80 mg L-1 | Visible light | 99% in 60 minutes | [ |
Ag/Ag2O/BiPO4/BiMoO6 | Quaternary heterojunction | More enhance charge separation and charge transfer | Rhodamine B | 0.05 g / 50 mL of 5 mg L-1 | Solar light | 55% in 25 minutes | [ |
BiPO4/BiOCl0.9I0.1 | Z-scheme | Enhanced redox ability, improved charge mobility and charge separation | Phenol | 0.08 g / 100 mL of 10 mg L-1 | Sun light | 88% in 10 minutes | [ |
BiPO4/Au-Pd | Surface plasmon resonance | Promoted charge separation, more catalytically active sites, improved light harvesting | Trichloroethylene | 0.01 g / 100 mL of 500 ppm | Visible light | ∼100% in 40 minutes | [ |
Ti3C2/BiPO4 | Schottky junction | Promoted photoproduced hole extraction, separation of photogenrated electron hole pairs, inhibited Photocorrosion, increased photostability | Rhodamine B | 100 mg / 50 mL of 10 mg L-1 | UV light | ∼100% in 20 minutes | [ |
nMBPO/mMBPO | Phase junction | Increased photocurrent, good separation charge carriers | Methylene blue | 25 mg / 50 mL of 3 × 10-5 mol L-1 | UV light | ∼100% in 40 minutes | [ |
N-doped carbon quantum dots/BiPO4 | Surface modification | Reduced recombination, photoluminescence upconversion | Ciprofloxacin | 30 mg / 100 mL of 10 mg L-1 | UV light | 87.5% in 120 minutes | [ |
Table. 3. Comparison of photocatalytic activity of different BiPO4 modification engineering strategies.
Photocatalyst | Engineering strategy | Improvement in properties | Target pollutant | Photocatalyst/pollutant concentration | Light source | Efficiency | Refs. |
---|---|---|---|---|---|---|---|
BiPO4 | Facets engineering (002) | More saturated atoms to adsorb pollutants, increased redox ability | Methylene blue | 100 mg/100 mL of 8 mg L-1 | Visible Light | 72.8% in 40 minutes | [ |
BiPO4 | Oxygen vacancies | Enhanced photocurrent, altered bandgap & enhanced light absorption, enhanced charge separation | Methylene blue | 25 mg/ 50 mL of 10-5 M | UV light | ∼65% in 50 minutes | [ |
C-doped BiPO4 | Non-metal doping | Enhanced charge separation, upshift the top of valance band, enhanced light absorption | 4-Chlorophenol | 30 mg/ 100 mL of 10 mg L-1 | UV light | 82.7% in 120 minutes | [ |
Yb3+ doped BiPO4 | Metal doping | Improved charge separation, downshift the conduction band minima, enhanced light absorption | Rhodamine B | 0.05 mg/ 50 mL of 5 mg L-1 | Sun light | 94.6% in 120 minutes | [ |
BiPO4/BiWO6 | Binary heterojunction | Enhanced charge separation, increased charge transfer | Rhodamine B | 50 mg/ 50 mL of 10 mg L-1 | Visible light | 92% in 100 minutes | [ |
BiVO4/BiPO4/graphene oxide | Ternary heterojunction | Improved adsorption of pollutants, enhance charge separation, good charge transfer | Reactive blue-19 | 30 mg / 50 mL of 80 mg L-1 | Visible light | 99% in 60 minutes | [ |
Ag/Ag2O/BiPO4/BiMoO6 | Quaternary heterojunction | More enhance charge separation and charge transfer | Rhodamine B | 0.05 g / 50 mL of 5 mg L-1 | Solar light | 55% in 25 minutes | [ |
BiPO4/BiOCl0.9I0.1 | Z-scheme | Enhanced redox ability, improved charge mobility and charge separation | Phenol | 0.08 g / 100 mL of 10 mg L-1 | Sun light | 88% in 10 minutes | [ |
BiPO4/Au-Pd | Surface plasmon resonance | Promoted charge separation, more catalytically active sites, improved light harvesting | Trichloroethylene | 0.01 g / 100 mL of 500 ppm | Visible light | ∼100% in 40 minutes | [ |
Ti3C2/BiPO4 | Schottky junction | Promoted photoproduced hole extraction, separation of photogenrated electron hole pairs, inhibited Photocorrosion, increased photostability | Rhodamine B | 100 mg / 50 mL of 10 mg L-1 | UV light | ∼100% in 20 minutes | [ |
nMBPO/mMBPO | Phase junction | Increased photocurrent, good separation charge carriers | Methylene blue | 25 mg / 50 mL of 3 × 10-5 mol L-1 | UV light | ∼100% in 40 minutes | [ |
N-doped carbon quantum dots/BiPO4 | Surface modification | Reduced recombination, photoluminescence upconversion | Ciprofloxacin | 30 mg / 100 mL of 10 mg L-1 | UV light | 87.5% in 120 minutes | [ |
[1] |
B. Obama, Science 355 (2017) 126-129.
DOI URL |
[2] |
K. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, R. Kumar, V. K. Thakur, V.-H. Nguyen, S. Pardeep, Process Saf. Environ. Prot. 142 (2020) 63-75.
DOI URL |
[3] |
R. Kumar, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, A. Saini, V. Saini, P. Singh, J. Environ. Chem. Eng. 8 (2020) 104291.
DOI URL |
[4] | S. Patial, P. Raizada, V. Hasija, P. Singh, V.K. Thakur, V.-H. Nguyen, Mater. To- day Energy. 19 (2020) 100589. |
[5] |
D. Kanakaraju, B.D. Glass, M. Oelgemöller, J. Environ. Manage. 219 (2018) 189-207.
DOI PMID |
[6] |
A. Sudhaik, P. Raizada, P. Singh, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, J. Environ. Chem. Eng. 8 (2020) 104483.
DOI URL |
[7] |
A. Kumar, P. Raizada, V.K. Thakur, V. Saini, A.A.P. Khan, N. Singh, P. Singh, Chem. Eng. Sci. 230 (2020) 116219.
DOI URL |
[8] |
A. Sudhaik, P. Raizada, S. Thakur, R.V. Saini, A.K. Saini, P. Singh, V.K. Thakur, V.-H. Nguyen, A.A.P. Khan, A.M. Asiri, J. Taiwan Inst. Chem. Eng. 113 (2020) 142-154.
DOI URL |
[9] |
A. Sudhaik, P. Raizada, S. Thakur, A.K. Saini, P. Singh, A. Hosseini-Ban-degharaei, Mater. Lett. 277 (2020) 128277.
DOI URL |
[10] | S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, V.-H. Nguyen, Environ. Chem. Lett. (2020) 1-36. |
[11] |
S. Patial, V. Hasija, P. Raizada, P. Singh, A.A.P.K. Singh, A.M. Asiri, J. Environ. Chem. Eng. 8 (2020) 103791.
DOI URL |
[12] |
J. Di, C. Chen, C. Zhu, P. Song, M. Duan, J. Xiong, R. Long, M. Xu, L. Kang, S. Guo, S. Chen, H. Chen, Z. Chi, Y. Weng, H. Li, L. Song, M. Wu, Q. Yan, S. Li1, Z. Liu, Nano Energy 79 (2021) 105429.
DOI URL |
[13] |
J. Di, C. Chen, S. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Nature Commun 10 (2019) 1-7.
DOI URL |
[14] |
J. Di, J. Xiong, H. Li, Z. Liu, Adv. mater. 30 (2018) 1704548.
DOI URL |
[15] |
J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li, Z. Liu, Angew. Chem. Int. Ed. 57 (2018) 14847-14851.
DOI URL |
[16] | P. Singh, P. Raizada, D. Pathania, A. Kumar, P. Thakur, Int. J. Photoenergy. 2013 (2013) 726250. |
[17] | P. Singh, K. Sharma, V. Hasija, V. Sharma, S. Sharma, P. Raizada, M. Singh, A.K. Saini, A. Hosseini-Bandegharaei, V.K. Thakur, Mater. Today Chem. 14 (2019) 100186. |
[18] |
V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V.K. Gupta, P. Singh, J. Saudi Chem. Soc. 23 (2019) 1119-1136.
DOI URL |
[19] | B. Pare, P. Singh, S.B. Jonnalgadda, J. Sci. Ind. Res. 68 (2009) 724-729. |
[20] | B. Pare, P. Singh, S.B. Jonnalgadda, J. Sci. Ind. Res. 48A (2009) 1364-1369. |
[21] |
S. Zhu, T. Xu, H. Fu, J. Zhao, Y. Zhu, Environ. Sci. Technol. 41 (2007) 6234-6239.
DOI URL |
[22] |
T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. Chem. 140 (2001) 163-172.
DOI URL |
[23] |
T.Le Bahers, M. Rerat, P. Sautet, J. Phys. Chem. C 118 (2014) 5997-6008.
DOI URL |
[24] | J. Cure, K. Cocq, A. Nicollet, K. Tan, T. Hungria, S. Assie-Souleille, S. Vivies, L. Salvagnac, M. Quevedo-Lopez, V. Maraval, R. Chauvin, A. Estève, C. Rossi, Adv. Sustain. Syst. 4 (2020) 20 0 0121. |
[25] |
J.Le Cunff, V. Tomašic´, Z. Gomzi, J. Photochem. Photobiol. A -Chem. 353 (2018) 159-170.
DOI URL |
[26] |
Y. Chen, H. Zhang, J. Zhang, J. Ma, L. Wang, H. Ye, G. Qian, Y. Ye, Adv. Powder Technol. 24 (2013) 207-211.
DOI URL |
[27] |
K. Dai, L. Lu, G. Dawson, J. mater. Eng. Perform. 22 (2013) 1035-1040.
DOI URL |
[28] |
R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik 127 (2016) 7143-7154.
DOI URL |
[29] |
C. Pan, Y. Zhu, Environ. Sci. Technol. 44 (2010) 5570-5574.
DOI URL |
[30] |
Y.-F. LIU, X.-G. MA, X. YI, Y.-F. ZHU, Acta Phys.-Chim. Sin. 28 (2012) 654-660.
DOI URL |
[31] | J. Xu, L. Li, C. Guo, Y. Zhang, W. Meng, Appl. Catal. B Environ. 130 (2013) 285-292. |
[32] | R. Kumar, P. Raizada, N. Verma, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, P. Singh, J. Clean. Prod. (2021) 126617. |
[33] |
H. Ali, Water. Air. Soil Pollut. 213 (2010) 251-273.
DOI URL |
[34] |
E. Forgacs, T. Cserháti, G. Oros, Environ. Int. 30 (2004) 953-971.
PMID |
[35] |
R. Gothwal, T. Shashidhar, Clean-Soil Air Water 43 (2015) 479-489.
DOI URL |
[36] | N. Al-Waili, K. Salom, A. Al-Ghamdi, M.J. Ansari, Sci. World J. 2012 (2012) 1-9. |
[37] |
H. Ye, H. Lin, J. Cao, S. Chen, Y. Chen, J. Mol. Catal. Chem. 397 (2015) 85-92.
DOI URL |
[38] | Y. Zhang, M. Sillanpää, S. Obregón, G. Colón, J. Mol, Catal. Chem. 402 (2015) 92-99. |
[39] |
G. Li, Y. Ding, Y. Zhang, Z. Lu, H. Sun, R. Chen, J. Colloid Interface Sci. 363 (2011) 497-503.
DOI URL |
[40] |
Y. Liu, Y. Lv, Y. Zhu, D. Liu, R. Zong, Y. Zhu, Appl. Catal. B Environ. 147 (2014) 851-857.
DOI URL |
[41] |
M. Nithya, U. Sathya, Optik 193 (2019) 163007.
DOI URL |
[42] | B. Lu, X. Ma, C. Pan, Y. Zhu, Appl. Catal. Gen. 435-436 (2012) 93-98. |
[43] |
J. Chen, Y. Du, Z. Shen, S. Lu, K. Su, S. Yuan, Z. Hu, A. Zhang, J. Feng, Sep. Purif. Technol. 179 (2017) 135-144.
DOI URL |
[44] | J. Chen, J. Xia, J. Di, M. Ji, H. Li, H. Xu, Q. Zhang, J. Lu, Colloids Surf, Physic-ochem. Eng. Asp. 488 (2016) 110-117. |
[45] |
H. Babich, D.L. Davis, Regul. Toxicol. Pharmacol. 1 (1981) 90-109.
DOI URL |
[46] |
Y. Vasseghian, A. Khataee, E.-N. Dragoi, M. Moradi, S. Nabavifard, G. Oliveri Conti, A. Mousavi Khaneghah, Arab. J. Chem. 13 (2020) 8458-8480.
DOI URL |
[47] | Y. Liu, Y. Zhu, J. Xu, X. Bai, R. Zong, Y. Zhu, Appl. Catal. B Environ. 142 (2013) 561-567. |
[48] |
Y. Hu, Z. Jia, R. Lv, C. Fan, H. Zhang, Mater. Res. Bull. 94 (2017) 222-230.
DOI URL |
[49] |
G.F. Kalf, C.A. Snyder, CRC Crit. Rev. Toxicol. 18 (1987) 141-159.
DOI URL |
[50] |
X. Zheng, J. Wang, J. Liu, Z. Wang, S. Chen, X. Fu, Appl. Catal. B Environ. 243 (2019) 780-789.
DOI URL |
[51] |
B. Pan, Y. Wang, Y. Liang, S. Luo, W. Su, X. Wang, Int. J. Hydrog. Energy 39 (2014) 13527-13533.
DOI URL |
[52] |
C. Pan, Y. Zhu, Catal. Sci. Technol. 5 (2015) 3071-3083.
DOI URL |
[53] |
Y. Naciri, A. Hsini, Z. Ajmal, J.A. Navío, B. Bakiz, A. Albourine, M. Ezahri, A. Benlhachemi, Adv. Colloid Interface Sci. 280 (2020) 102160.
DOI URL |
[54] |
C. Pan, D. Li, X. Ma, Y. Chen, Y. Zhu, Catal. Sci. Technol. 1 (2011) 1399-1405.
DOI URL |
[55] |
D. Errandonea, O. Gomis, D. Santamaría-Perez, B. García-Domene, A. Muñoz, P. Rodríguez-Hernández, S.N. Achary, A.K. Tyagi, C. Popescu, J. Appl. Phys. 117 (2015) 105902.
DOI URL |
[56] | C.L. Mooney-slater, Polymorphic forms of bismuth phosphate 117 (1962) 371. |
[57] |
J. Wang, J. Li, H. Li, S. Duan, S. Meng, X. Fu, S. Chen, Chem. Eng. J. 330 (2017) 433-441.
DOI URL |
[58] |
B. Long, J. Huang, X. Wang, Prog. Nat. Sci. Mater. Int. 22 (2012) 644-653.
DOI URL |
[59] |
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
DOI PMID |
[60] |
Y.A. Hizhnyi, S.G. Nedilko, V.P. Chornii, M.S. Slobodyanik, I.V. Zatovsky, K.V. Terebilenko, J. Alloys Compd. 614 (2014) 420-435.
DOI URL |
[61] |
J. Liu, G. Yang, X. Zhang, J. Wang, R. Wang, J. Power Sources. 197 (2012) 253-259.
DOI URL |
[62] |
B. Shi, H. Yin, T. Li, J. Gong, S. Lv, Q. Nie, Mater. Res. 20 (2017) 619-627.
DOI URL |
[63] |
F. Xue, H. Li, Y. Zhu, S. Xiong, X. Zhang, T. Wang, X. Liang, Y. Qian, J. Solid State Chem. 182 (2009) 1396-1400.
DOI URL |
[64] |
H. Lv, J. Guang, Y. Liu, H. Tang, P. Zhang, Y. Lu, J. Wang, RSC Adv. 5 (2015) 100625-100632.
DOI URL |
[65] |
Y. Zhu, Q. Ling, Y. Liu, H. Wang, Y. Zhu, Appl. Catal. B Environ. 187 (2016) 204-211.
DOI URL |
[66] |
G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Ind. Eng. Chem. Res. 53 (2014) 13023-13029.
DOI URL |
[67] |
Y.-F. Lin, H.-W. Chang, S.-Y. Lu, C.W. Liu, J. Phys. Chem. C 111 (2007) 18538-18544.
DOI URL |
[68] |
Y. Wang, X. Guan, L. Li, G. Li, CrystEngComm 14 (2012) 7907-7914.
DOI URL |
[69] |
R. Fu, S. Xu, Y.-N. Lu, J.-J. Zhu, Cryst. Growth Des. 5 (2005) 1379-1385.
DOI URL |
[70] |
M. Guan, J. Sun, F. Tao, Z. Xu, Cryst. Growth Des. 8 (2008) 2694-2697.
DOI URL |
[71] |
Q. Zhang, H. Tian, N. Li, M. Chen, F. Teng, CrystEngComm. 16 (2014) 8334-8339.
DOI URL |
[72] |
J. Geng, W.-H. Hou, Y.-N. Lv, J.-J. Zhu, H.-Y. Chen, Inorg. Chem. 44 (2005) 8503-8509.
PMID |
[73] | L.W. Cheng, J.C. Tsai, T.Y. Huang, C.W. Huang, B. Unnikrishnan, Y.W. Lin, J. Cryst. Growth 1 (2014) 025023. |
[74] |
V.D. Nithya, B. Hanitha, S. Surendran, D. Kalpana, R.K. Selvan, Ultrason. Sonochem. 22 (2015) 300-310.
DOI PMID |
[75] |
M. Zhao, L. Li, L. Yang, J. Zheng, G. Li, CrystEngComm. 15 (2013) 609-615.
DOI URL |
[76] |
K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587-14619.
PMID |
[77] |
N.D. Van, Ceram. Int. 45 (2019) 1447-1449.
DOI URL |
[78] |
Y. Wang, H.W. Huang, C.M. Quan, N. Tian, Y.H. Zhang, J. Cryst. Growth 43 (2016) 1-6.
DOI URL |
[79] |
M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605 (2016) 2-19.
DOI URL |
[80] |
W.K. Darkwah, B.B. Adormaa, M.K.C. Sandrine, Y. Ao, Catal. Sci. Technol. 9 (2019) 546-566.
DOI URL |
[81] |
S. Bai, L. Wang, Z. Li, Y. Xiong, Adv. Sci. 4 (2017) 1600216.
DOI URL |
[82] |
X. Zheng, J. Wang, J. Liu, Z. Wang, S. Chen, X. Fu, Appl. Catal. B-Environ. 243 (2019) 780-789.
DOI URL |
[83] |
S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296-336.
DOI URL |
[84] |
P. Raizada, V. Soni, A. Kumar, P. Singh, A.A. Parwaz Khan, A.M. Asiri, V. K. Thakur, V.-H. Nguyen, J. Materiomics. 7 (2021) 388-418.
DOI URL |
[85] |
Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Angew. Chem. Int. Ed. 54 (2015) 7234-7254.
DOI URL |
[86] |
M. Mittal, A. Gupta, O.P. Pandey, Sol. Energy. 165 (2018) 206-216.
DOI URL |
[87] |
A. Kumar, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, P. Singh, J. Mater. Chem. A. 9 (2021) 111-153.
DOI URL |
[88] |
X. Xu, X. Ding, X. Yang, P. Wang, S. Li, Z. Lu, H. Chen, J. Hazard. Mater. 364 (2019) 691-699.
DOI URL |
[89] |
Y. Lv, Y. Zhu, Y. Zhu, J. Phys. Chem. C 117 (2013) 18520-18528.
DOI URL |
[90] |
Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, J. Mater. Chem. A 2 (2014) 1174-1182.
DOI URL |
[91] |
Z. Wei, Y. Liu, J. Wang, R. Zong, W. Yao, J. Wang, Y. Zhu, Nanoscale 7 (2015) 13943-13950.
DOI URL |
[92] | V. Hasija, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, V.H. Nguyen, 63 (2020) 1030-1045. |
[93] |
P. Raizada, A. Aslam Parwaz Khan, P. Singh, Sep. Purif. Technol. 247 (2020) 116957.
DOI URL |
[94] | A. Kumar, P. Raizada, P. Singh, A. Hosseini-Bandegharaei, V.K. Thakur, J. Pho-tochem. Photobiol. Chem. 397 (2020) 112588. |
[95] |
S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436 (2005) 91-94.
DOI URL |
[96] | P. Raizada, B. Priya, P. Thakur, Ind. J. Chem. 5A (2016) 803-809. |
[97] |
J. Di, J. Chen, M. Ji, Q. Zhang, L. Xu, J. Xia, H. Li, Chem. Eng. J. 313 (2017) 1477-1485.
DOI URL |
[98] |
Y. Cao, N. Liu, J. Tian, Y. Liu, X. Zhang, Chem. Phys. Lett. 640 (2015) 180-183.
DOI URL |
[99] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
DOI URL |
[100] |
H.Y. Yin, Y.F. Zheng, X.C. Song, RSC Adv. 9 (2019) 11005-11012.
DOI URL |
[101] |
W. Maisang, A. Phuruangrat, C. Randorn, S. Kungwankunakorn, S. Thongtem, O. Wiranwetchayan, S. Wannapop, S. Choopun, S. Kaowphong, T. Thongtem, Mater. Sci. Semicond. Process. 75 (2018) 319-326.
DOI URL |
[102] |
J. Xia, J. Zhao, J. Chen, J. Di, M. Ji, L. Xu, Z. Chen, H. Li, J. Photochem. Photobiol. Chem. 339 (2017) 59-66.
DOI URL |
[103] |
R.A. Geioushy, S.M. El-Sheikh, A.B. Azzam, B.A. Salah, M. Farida, J. Hazard. Mater. 381 (2020) 120955.
DOI URL |
[104] |
Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao, B. Liu, J. Clean. Prod. 247 (2020) 119108.
DOI URL |
[105] |
X. Hu, Q. Ma, X. Wang, Y. Yang, N. Liu, C. Zhang, N. Kawazoe, G. Chen, Y. Yang, J. Catal. 387 (2020) 28-38.
DOI URL |
[106] | J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, Small Methods 1 (2017) 170 0 080. |
[107] |
A.A.P. Khan, P. Singh, P. Raizada, A.M. Asiri, J. Sol-Gel Sci. Technol. 95 (2020) 408-422.
DOI URL |
[108] |
V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, J. Kaushal, P. Singh, Mater. Lett. 270 (2020) 127693.
DOI URL |
[109] | P. Raizada, A. Sudhaik, P. Singh, A. Hosseini-Bandegharaei, P. Thakur, Sep. Pu- rif. Technol. 227 (2019) 115692. |
[110] |
A.J. Bard, J. Photochem. 10 (1979) 59-75.
DOI URL |
[111] |
H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5 (2006) 782-786.
DOI URL |
[112] |
W. Tu, Y. Zhou, S. Feng, Q. Xu, P. Li, X. Wang, M. Xiao, Z. Zou, Chem. Commun. 51 (2015) 13354-13357.
DOI URL |
[113] |
J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883-16890.
DOI URL |
[114] |
Y. Su, G. Tan, T. Liu, L. Lv, Y. Wang, X. Zhang, Z. Yue, H. Ren, A. Xia, Appl. Surf. Sci. 457 (2018) 104-114.
DOI URL |
[115] |
P. Yue, G. Zhang, X. Cao, B. Wang, Y. Zhang, Y. Wei, Sep. Purif. Technol. 213 (2019) 34-44.
DOI URL |
[116] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[117] |
Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[118] |
Y. Zhang, S.-J. Park, J. Catal. 355 (2017) 1-10.
DOI URL |
[119] |
X. Zhou, G. Liu, J. Yu, W. Fan, J. Mater. Chem. 22 (2012) 21337.
DOI URL |
[120] |
H. Lin, H. Ye, B. Xu, J. Cao, S. Chen, Catal. Commun. 37 (2013) 55-59.
DOI URL |
[121] |
W. Hou, S.B. Cronin, Adv. Funct. Mater. 23 (2013) 1612-1619.
DOI URL |
[122] | S. Bai, X. Li, Q. Kong, R. Long, C. Wang, J. Jiang, Y. Xiong, Adv. Mater. 27 (2015) 34 4 4-3452. |
[123] |
M. Chen, X. Li, Y. Huang, J. Yao, Y. Li, S. Lee, W. Ho, T. Huang, K. Chen, Appl. Surf. Sci. 513 (2020) 145775.
DOI URL |
[124] |
N. Fajrina, M. Tahir, Int. J. Hydrog. Energy. 44 (2019) 540-577.
DOI URL |
[125] |
L. Zhang, J. Yang, T. Xie, S. Feng, L. Xu, Mater. Des. 192 (2020) 108772.
DOI URL |
[126] |
Y. Zhu, Y. Liu, Y. Lv, Q. Ling, D. Liu, Y. Zhu, J. Mater. Chem. A 2 (2014) 13041-13048.
DOI URL |
[127] |
S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Ban-degharaei, V.K. Thakur, J. Clean. Prod. 228 (2019) 755-769.
DOI URL |
[128] |
M. Pirsaheb, A. Asadi, M. Sillanpää, N. Farhadian, J. Mol. Liq. 271 (2018) 857-871.
DOI URL |
[129] |
M.J. Molaei, Sol. Energy 196 (2020) 549-566.
DOI URL |
[130] |
X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Small 12 (2016) 6640-6696.
DOI URL |
[131] | D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J.M. Tour, ACS Nano 4 (2010) 4 806-4 814. |
[132] | Y.H. Ng, A. Iwase, N.J. Bell, A. Kudo, Rose Amal, Catal. Today 164 (2011) 353-357. |
[133] |
J. Di, J. Xia, X. Chen, M. Ji, S. Yin, Q. Zhang, H. Li, Carbon 114 (2017) 601-607.
DOI URL |
[134] |
Y. Zhang, B. Shen, H. Huang, Y. He, B. Fei, F. Lv, Appl. Surf. Sci. 319 (2014) 272-277.
DOI URL |
[135] |
Z. Chen, X. Chen, J. Di, Y. Liu, S. Yin, J. Xia, H. Li, J. Colloid Interface Sci. 492 (2017) 51-60.
DOI URL |
[136] |
R. Wu, H. Song, N. Luo, G. Ji, J. Colloid Interface Sci. 524 (2018) 350-359.
DOI URL |
[1] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[2] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[3] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[4] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[5] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[6] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[7] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[8] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[9] | Linlin Zhang, Wenxing Peng, YaKun Li, Rui Qin, Dong Yue, Chengjun Ge, Jianjun Liao. Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity [J]. J. Mater. Sci. Technol., 2021, 90(0): 143-149. |
[10] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[11] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
[12] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
[13] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[14] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[15] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||