J. Mater. Sci. Technol. ›› 2022, Vol. 108: 226-235.DOI: 10.1016/j.jmst.2021.07.059
• Research Article • Previous Articles Next Articles
H. Zhanga, Y. Wanga,b, J.J. Wangb, D.R. Nia,*(), D. Wanga, B.L. Xiaoa,*(
), Z.Y. Maa
Received:
2021-02-27
Revised:
2021-07-18
Accepted:
2021-07-22
Published:
2021-10-29
Online:
2021-10-29
Contact:
D.R. Ni,B.L. Xiao
About author:
blxiao@imr.ac.cn (B.L. Xiao).H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment[J]. J. Mater. Sci. Technol., 2022, 108: 226-235.
Parameters | Value |
---|---|
Laser power | 275 W |
Scanning speed | 1.6 m/s |
Layer thickness | 30 μm |
Average particle size | 43 μm |
Aging temperature | 130/150/170/190 °C (4 h) |
Table 1. Parameters for SLM processing and heat treatment.
Parameters | Value |
---|---|
Laser power | 275 W |
Scanning speed | 1.6 m/s |
Layer thickness | 30 μm |
Average particle size | 43 μm |
Aging temperature | 130/150/170/190 °C (4 h) |
Fig. 6. Defect distribution of (a) as-fabricated and (b, c) aged samples, (d) density of as-fabricated and aged samples (arrows indicate pore defects), (e) number and size distribution of pores.
Fig. 8. Microstructure of (a) as-fabricated sample and (b) 130 °C aged sample, grain size distribution profiles of (c) 130 °C aged sample and (d) 190 °C aged sample.
Processing | YS, MPa | UTS, MPa | EL,% |
---|---|---|---|
As fabricated | 276 ± 6 | 403 ± 6 | 6.37 ± 0.23 |
130 °C aged 150 °C aged 170 °C aged 190 °C aged | 309 ± 1 | 451 ± 10 | 6.46 ± 0.43 |
296 ± 4 | 433 ± 13 | 5.30 ± 1.82 | |
293 ± 11 | 408 ± 9 | 3.18 ± 0.38 | |
270 ± 14 | 380 ± 34 | 3.54 ± 1.71 |
Table 2. UTS and EL of as-fabricated and aged samples along building direction.
Processing | YS, MPa | UTS, MPa | EL,% |
---|---|---|---|
As fabricated | 276 ± 6 | 403 ± 6 | 6.37 ± 0.23 |
130 °C aged 150 °C aged 170 °C aged 190 °C aged | 309 ± 1 | 451 ± 10 | 6.46 ± 0.43 |
296 ± 4 | 433 ± 13 | 5.30 ± 1.82 | |
293 ± 11 | 408 ± 9 | 3.18 ± 0.38 | |
270 ± 14 | 380 ± 34 | 3.54 ± 1.71 |
Fig. 15. Crack propagation path of (a) as-fabricated and (b) 130 °C aged samples, (c) hardness near molten pool boundaries (the arrows indicate crack propagation through the molten pools).
[1] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[2] | A. Hadadzadeh, B.S. Amirkhiz, S. Shakerin, J. Kelly, J. Li, M. Mohammadi, Addit. Manuf. 31 (2020) 100937. |
[3] | L. Yan, Y. Chen, F. Liou, Addit. Manuf. 31 (2020) 100901. |
[4] |
A.G. Demir, C.A. Biffi, J. Manuf. Process. 37 (2019) 362-369.
DOI URL |
[5] |
Q. Yan, B. Song, Y. Shi, J. Mater. Sci. Technol. 41 (2020) 199-208.
DOI URL |
[6] |
H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Mater. Lett. 214 (2018) 123-126.
DOI URL |
[7] |
N.O. Larrosa, W. Wang, N. Read, M.H. Loretto, C. Evans, J. Carr, U. Tradowsky, M. M. Attallah, P.J. Withers, Theor. Appl. Fract. Mech. 98 (2018) 123-133.
DOI URL |
[8] | J. YU, W. Jing, N.I. Dingrui, X.I.A.O. Bolv, M.A. Zongyi, P.A.N. Xinglong, Acta Met- all. Sin. 54 (2018) 1725-1734. |
[9] |
L. Zhuo, Z. Wang, H. Zhang, E. Yin, Y. Wang, T. Xu, C. Li, Mater. Lett. 234 (2019) 196-200.
DOI URL |
[10] |
Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang, J. Mater. Sci. Technol 62 (2021) 162-172.
DOI |
[11] |
J. Bi, Z. Lei, Y. Chen, X. Chen, N. Lu, Z. Tian, X. Qin, J. Mater. Sci. Technol. 67 (2021) 23-35.
DOI URL |
[12] | A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Mater. Sci. Eng. A (20 0 0) 102-107. |
[13] |
F. Calignano, Mater. Des. 64 (2014) 203-213.
DOI URL |
[14] |
L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61 (2013) 1809-1819.
DOI URL |
[15] | D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Ambrosio, E. Atzeni, Mater.(Basel) 6 (2013) 856-869. |
[16] |
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2013) 133-164.
DOI URL |
[17] |
J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775-5799.
DOI URL |
[18] | G. Yu, D. Gu, D. Dai, M. Xia, C. Ma, K. Chang, Appl. Phys. A 122 (2016). |
[19] |
K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Mater. Sci. Technol. 31 (2015) 917-923.
DOI URL |
[20] |
N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704 (2017) 218-228.
DOI URL |
[21] | R. Casati, M. Hamidi Nasab, M. Coduri, V. Tirelli, M. Vedani, Met. Basel 8 (2018) 954. |
[22] |
I. Rosenthal, R. Shneck, A. Stern, Mater. Sci. Eng. A 729 (2018) 310-322.
DOI URL |
[23] |
Q. Han, Y. Jiao, Int. J. Adv. Manuf. Technol. 102 (2019) 3315-3324.
DOI URL |
[24] |
L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan, L. J. Guo, Mater. Sci. Eng. A 734 (2018) 299-310.
DOI URL |
[25] |
W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Mater. Sci. Eng. A 663 (2016) 116-125.
DOI URL |
[26] | A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis, Addit. Manuf. 21 (2018) 234-247. |
[27] | Y. Kaibin, L. Yunzhong, Y. Changyi, Mater. Sci. Eng Powder Metall. 23 (2019) 298-305. |
[28] | Y. Wang, J.J. Wang, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin. 57 (2021) 613-622. |
[29] |
M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Scr. Mater. 63 (2010) 438-441.
DOI URL |
[30] |
J. Fiocchi, A. Tuissi, P. Bassani, C.A. Biffi, J. Alloys Compd. 695 (2017) 3402-3409.
DOI URL |
[31] |
J. Delahaye, J.T. Tchuindjang, J. Lecomtebeckers, O. Rigo, A. Habraken, A. Mertens, Acta Mater. 175 (2019) 160-170.
DOI |
[32] |
E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, JOM 68 (2016) 943-949.
DOI URL |
[33] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[34] |
A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Mater. Sci. Eng. A 739 (2019) 295-300.
DOI URL |
[35] |
H. Cao, M. Hao, C. Shen, P. Liang, Vacuum 146 (2017) 278-281.
DOI URL |
[36] | J.H. Tan, W.L.E. Wong, K.W. Dalgarno, Addit. Manuf. 18 (2017) 228-255. |
[37] |
M. Tang, P.C. Pistorius, Int. J. Fatigue 94 (2017) 192-201.
DOI URL |
[38] | N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1-4 (2014) 77-86. |
[39] | X.P. Li, K.M. O'Donnell, T.B. Sercombe, Addit Manuf 10 (2016) 10-14. |
[40] |
I. Ghosh, S.K. Das, N. Chakraborty, Neural Comput. Appl. 25 (2013) 653-662.
DOI URL |
[41] |
Y. Li, D. Gu, Mater. Des. 63 (2014) 856-867.
DOI URL |
[42] | Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang, R.D.K. Misra, Mater. Sci. Eng. A 740- 741 (2019) 148-156. |
[43] |
X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, Acta Mater. 95 (2015) 74-82.
DOI URL |
[44] | D. Gu, Q. Shi, K. Lin, L. Xi, Addit. Manuf. 22 (2018) 265-278. |
[45] |
Y. Huang, L. Yang, X. Du, Y. Yang, Int. J. Therm. Sci. 104 (2016) 146-157.
DOI URL |
[46] |
J. Albrecht, I.M. Bernstein, A.W. Thompson, Metall. Trans. A 13 (1982) 811-820.
DOI URL |
[47] |
J. Delahaye, J.T. Tchuindjang, J. Lecomte-Beckers, O. Rigo, A.M. Habraken, A. Mertens, Acta Mater. 175 (2019) 160-170.
DOI |
[48] | N. Takata, M. Liu, H. Kodaira, A. Suzuki, M. Kobashi, Addit. Manuf. 33 (2020) 101152. |
[1] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[2] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[3] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[4] | Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review [J]. J. Mater. Sci. Technol., 2022, 99(0): 193-206. |
[5] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[6] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[7] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[8] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[9] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[10] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[11] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[12] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[13] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[14] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[15] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||