J. Mater. Sci. Technol. ›› 2022, Vol. 99: 193-206.DOI: 10.1016/j.jmst.2021.04.072
• Research article • Previous Articles Next Articles
Xiang Peng, Wencai Liu*(), Guohua Wu*(
), Hao Ji, Wenjiang Ding
Received:
2021-03-02
Revised:
2021-03-30
Accepted:
2021-04-21
Published:
2022-02-10
Online:
2022-02-09
Contact:
Wencai Liu,Guohua Wu
About author:
ghwu@sjtu.edu.cn (G. Wu).Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review[J]. J. Mater. Sci. Technol., 2022, 99: 193-206.
Fig. 2. The comparison between experimental and predicted results at different strain rates: (a) 1 s-1, (b) 0.1 s-1, (c) 0.01 s-1 and (d) 0.001 s-1 [35].
Alloy | State | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
Mg-8Li-3Al-1Sn | As-cast | 116 ± 3 | 176 ±7 | 15.9 ±1.2 |
As-extruded | 251 ±2 | 275 ±4 | 17.4 ±1.4 | |
Mg-8Li-3Al-2Sn | As-cast | 138 ±2 | 177 ±5 | 12.3 ±0.8 |
As-extruded | 270 ±4 | 297 ±5 | 20.8 ±1.5 | |
Mg-8Li-3Al-3Sn | As-cast | 156 ±3 | 190 ±3 | 9.9 ±2.3 |
As-extruded | 253 ±6 | 289 ±8 | 17.9 ±2.1 |
Table 1 The effect of extrusion on tensile properties in the Mg-8Li-3Al-(1, 2, 3)Sn alloys [2].
Alloy | State | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
Mg-8Li-3Al-1Sn | As-cast | 116 ± 3 | 176 ±7 | 15.9 ±1.2 |
As-extruded | 251 ±2 | 275 ±4 | 17.4 ±1.4 | |
Mg-8Li-3Al-2Sn | As-cast | 138 ±2 | 177 ±5 | 12.3 ±0.8 |
As-extruded | 270 ±4 | 297 ±5 | 20.8 ±1.5 | |
Mg-8Li-3Al-3Sn | As-cast | 156 ±3 | 190 ±3 | 9.9 ±2.3 |
As-extruded | 253 ±6 | 289 ±8 | 17.9 ±2.1 |
Fig. 6. SEM and EDS analysis of cast and extruded Mg-8Li-3Al-2Zn-0.5Y alloy with different ratios: (a) 4:1; (b) 9:1; (c) 16:1; (d) 25:1; (e) cast specimen; (f) typical EDS pointing analysis for the labeled-B particles [40].
Direction | Cumulative rolling strain | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | |||
---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD* | Mean | STD* | ||
As-cast | 165.1 | 5.6 | 200.3 | 4.2 | 13.9 | 2.6 | |
RD | 10% | 169.2 | 4.1 | 209.3 | 3.7 | 10.5 | 1.2 |
30% | 205.3 | 3.5 | 240.2 | 4.5 | 8.2 | 1.2 | |
50% | 213.5 | 4.6 | 247.1 | 2.7 | 7.3 | 1.1 | |
60% | 224.8 | 4.4 | 247.5 | 1.6 | 7.2 | 0.5 | |
70% | 230.3 | 2.1 | 250.9 | 3.1 | 7.1 | 0.9 | |
TD | 10% | 181.3 | 2.3 | 211.3 | 1.5 | 7.5 | 0.9 |
30% | 198.6 | 2.8 | 228.7 | 4.6 | 4.3 | 0.6 | |
50% | 202.6 | 2.2 | 238.2 | 3.3 | 3.2 | 0.5 | |
60% | 208.8 | 3.8 | 239.7 | 3.2 | 2.9 | 0.3 | |
70% | 210.4 | 4.2 | 248.2 | 2.5 | 2.7 | 0.2 |
Table 2 Tensile properties of as-cast and as-rolled Mg-8Li-3Al-2Zn-0.5Y in two directions [39]
Direction | Cumulative rolling strain | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | |||
---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD* | Mean | STD* | ||
As-cast | 165.1 | 5.6 | 200.3 | 4.2 | 13.9 | 2.6 | |
RD | 10% | 169.2 | 4.1 | 209.3 | 3.7 | 10.5 | 1.2 |
30% | 205.3 | 3.5 | 240.2 | 4.5 | 8.2 | 1.2 | |
50% | 213.5 | 4.6 | 247.1 | 2.7 | 7.3 | 1.1 | |
60% | 224.8 | 4.4 | 247.5 | 1.6 | 7.2 | 0.5 | |
70% | 230.3 | 2.1 | 250.9 | 3.1 | 7.1 | 0.9 | |
TD | 10% | 181.3 | 2.3 | 211.3 | 1.5 | 7.5 | 0.9 |
30% | 198.6 | 2.8 | 228.7 | 4.6 | 4.3 | 0.6 | |
50% | 202.6 | 2.2 | 238.2 | 3.3 | 3.2 | 0.5 | |
60% | 208.8 | 3.8 | 239.7 | 3.2 | 2.9 | 0.3 | |
70% | 210.4 | 4.2 | 248.2 | 2.5 | 2.7 | 0.2 |
Fig. 7. Pole figures of as-rolled (a) sheet 1, (b) sheet 2, and (c) sheet 3. Inverse pole figures of the as-rolled (d) sheet 1, (e) sheet 2, and (f) sheet 3. The alloy sheet 1 subjected the rolling deformation with the RD (rolling direction), TD (transverse direction) and ND (normal direction) are all invariable between rolling passes. The alloy sheet 2 subjected the rolling deformation with the RD deflects 180°C, while TD and ND are invariable between rolling passes deformation. As for sheet 3, TD is invariable, while RD and ND deflect 180°C [50].
Fig. 8. Microstructures of the Mg-8Li alloy after HPT processing for 5 turns: (a) bright-field image, (b) SAED pattern, (c) dark-field image and (d) appearance of HPT-processed samples after pulling to failure at different temperatures [74].
Fig. 10. Mechanical properties of the LA143 alloys after various MDF passes: (a) True stress-strain curves for compression tests at 300 K, (b) yield strength and specific yield strength as a function of the total equivalent strain, (c, d) work hardening rate as a function of true strain during compression tests [1].
Fig. 13. (a) Scanning transmission electron microscope (STEM) images, (b) corresponding Al compositional map, and (c, d) atom probe tomography (APT) results of water-quenched Mg-11Li-3Al-1(Zr, Y) alloy [86].
Fig. 14. (a) High-resolution TEM(HRTEM) images of water-quenched Mg-11Li-3Al-1(Zr, Y) alloy, (b) the inverse fast Fourier transform (IFFT) pattern of the area marked by the yellow square in (a), (c) hardness changes in alloys during natural ageing, and (d) bright-field TEM image for Mg-11Li-3Al-1(Zr, Y) after natural aging for 1000 h [86].
[1] |
T. Mineta, K. Hasegawa, H. Sato, Mater. Sci. Eng. A 773 (2020) 138867.
DOI URL |
[2] |
X. Chen, Y. Zhang, M. Cong, Y. Lu, X. Li, Trans. Nonferrous Met. Soc. China 30 (2020) 2079-2089.
DOI URL |
[3] | J. Li, L. Jin, F. Wang, S. Dong, J. Dong, J. Alloys Compd. 5 (2021) 140871. |
[4] |
T.C. Chang, J.Y. Wang, C.L. Chu, S. Lee, Mater. Lett. 60 (2006) 3272-3276.
DOI URL |
[5] |
H. Tang, Y. Yan, M. Zhang, X. Li, W. Han, Y. Xue, Z. Zhang, H. He, Electrochim. Acta 107 (2013) 209-215.
DOI URL |
[6] |
R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 60 (2014) 65-100.
DOI URL |
[7] |
B. Jiang, C. Zhang, T. Wang, Z. Qu, R. Wu, M. Zhang, Mater. Des. 34 (2012) 863-866.
DOI URL |
[8] |
C.Q. Li, D.K. Xu, Z.R. Zhang, E.H. Han, J. Mater. Sci. Technol. 57 (2020) 138-145.
DOI |
[9] |
R. Maurya, D. Mittal, K. Balani, J. Mater. Res. Technol. 9 (2020) 4749-4762.
DOI URL |
[10] |
Y. Zhou, Z. Chen, J. Ji, Z. Sun, J. Alloys Compd. 770 (2019) 540-548.
DOI URL |
[11] |
Y. Sun, R. Wang, J. Ren, C. Peng, Y. Feng, Mech. Mater. 131 (2019) 158-168.
DOI URL |
[12] | X. Peng, G. Wu, L. Xiao, H. Ji, J. Zhang, W. Zou, Z. Li, W. Liu, Ef- fects of Ce-rich RE on microstructure and mechanical properties of as-cast Mg-8Li-3Al-2Zn-0.5Nd alloy with duplex structure,Prog. Nat. Sci. Mater. Int. 29 (1) (2019) 103-109. |
[13] |
R. Wu, M. Zhang, Mater. Sci. Eng. A 520 (2009) 36-39.
DOI URL |
[14] |
P.C. Wang, H.C. Lin, K.M. Lin, M.T. Yeh, C.Y. Lin, Mater. Trans. 50 (2009) 2259-2263.
DOI URL |
[15] |
J. Dutkiewicz, Ł. Rogal, D. Kalita, P. Fima, J. Alloys Compd. 784 (2019) 686-696.
DOI URL |
[16] |
H. Ji, X. Peng, X. Zhang, W. Liu, G. Wu, L. Zhang, W. Ding, J. Alloys Compd. 791 (2019) 655-664.
DOI URL |
[17] |
Y. Sun, R. Wang, C. Peng, Y. Feng, Mater. Sci. Eng. A 733 (2018) 429-439.
DOI URL |
[18] |
F. Cao, G. Xue, G. Xu, Mater. Sci. Eng. A 704 (2017) 360-374.
DOI URL |
[19] |
Y. Zeng, B. Jiang, R. Li, J. He, X. Xia, F. Pan, Mater. Sci. Eng. A 631 (2015) 189-195.
DOI URL |
[20] |
S.K. Wu, J.Y. Wang, K.C. Lin, H.Y. Bor, Mater. Sci. Eng. A 552 (2012) 76-80.
DOI URL |
[21] | J.H. Jackson, P.D. Frost, A.C. Loonam, L.W. Eastwood, C.H. Lorig, JOM 1 (1949) 14 9-16 8. |
[22] |
H. Wu, T. Wang, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, J. Manuf. Process. 46 (2019) 139-146.
DOI URL |
[23] |
M.L. Zhang, P. Cao, Wei. Han, Y.D. Yan, L.J. Chen, Trans. Nonferrous Met. Soc. China 22 (2012) 16-22.
DOI URL |
[24] |
W. Han, Y. Tian, M. Zhang, Y. Yan, X. Jing, J. Rare Earths 27 (2009) 1046-1050.
DOI URL |
[25] |
X. Li, C. Cheng, Q. Le, X. Zhou, P. Wang, J. Alloys Compd. 805 (2019) 947-956.
DOI URL |
[26] |
X.Y. Qian, Y. Zeng, B. Jiang, Y.C. Dou, F.S. Pan, Mater. Sci. Eng. A 742 (2019) 241-254.
DOI URL |
Y. Zou, L. Zhang, H. Wang, X. Tong, M. Zhang, Z. Zhang, J. Alloys Compd. 669 (2016) 72-78. | |
[27] |
Y. Sun, R. Wang, J. Ren, C. Peng, Z. Cai, Mater. Sci. Eng. A 755 (2019) 201-210.
DOI URL |
[28] |
H. Ding, Q. Liu, H. Zhou, X. Zhou, A. Atrens, Trans. Nonferrous Met. Soc. China 27 (2017) 2587-2597.
DOI URL |
[29] |
C. Li, Y. He, H. Huang, J. Magnes. Alloy. 9 (2021) 569-580.
DOI URL |
[30] |
J. Wang, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang, Mater. Charact. 157 (2019) 109924.
DOI URL |
[31] |
T. Al-Samman, Acta Mater 57 (2009) 2229-2242.
DOI URL |
[32] |
Y. Shi, Q. Shu, S. Zhao, H. Zou, S. Jin, K. Chen, L. Li, X. Lv, J. Alloys Compd. 835 (2020) 155296.
DOI URL |
[33] |
X. Li, C. Cheng, Q. Le, L. Bao, P. Jin, P. Wang, L. Ren, H. Wang, X. Zhou, C. Hu, J. Mater. Sci. Technol. 52 (2020) 152-161.
DOI URL |
[34] | X. Li, L. Ren, Q. Le, P. Jin, C. Cheng, T. Wang, P. Wang, Z. Xiong, X. Chen, D. Li, J. Alloys Compd. 831 (2020) 154 86 8. |
[35] |
B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, F.S. Pan, Mater. Des. 53 (2014) 357-365.
DOI URL |
[36] |
T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, G.B. Wei, J. Alloys Compd. 639 (2015) 79-88.
DOI URL |
[37] |
Y. Zhou, Z. Chen, J. Ji, Z. Sun, Mater. Sci. Eng. A 707 (2017) 110-117.
DOI URL |
[38] |
W. Liu, S. Feng, Z. Li, J. Zhao, G. Wu, X. Wang, L. Xiao, W. Ding, J. Mater. Sci. Technol. 34 (2018) 2256-2262.
DOI URL |
[39] |
S. Feng, W. Liu, J. Zhao, G. Wu, H. Zhang, W. Ding, Mater. Sci. Eng. A 692 (2017) 9-16.
DOI URL |
[40] |
S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, T. Al-Samman, J. Alloys Compd. 615 (2014) 501-506.
DOI URL |
[42] |
G. Wei, X. Peng, A. Hadadzadeh, Y. Mahmoodkhani, W. Xie, Y. Yang, M.A. Wells, Mech. Mater. 89 (2015) 241-253.
DOI URL |
[43] |
G. Liu, W. Xie, A. Hadadzadeh, G. Wei, Z. Ma, J. Liu, Y. Yang, W. Xie, X. Peng, M. Wells, J. Alloys Compd. 766 (2018) 460-469.
DOI URL |
[44] |
M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, M. Knezevic, Acta Mater 86 (2015) 254-268.
DOI URL |
[45] | S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neuge- bauer, Acta Mater 70 (2014) 92-104. |
[46] |
Q. Dong, Z. Luo, H. Zhu, L. Wang, T. Ying, Z. Jin, D. Li, W. Ding, X. Zeng, J. Mater. Sci. Technol. 34 (2018) 1773-1780.
DOI |
[47] |
J. Han, X.M. Su, Z.H. Jin, Y.T. Zhu, Scr. Mater. 64 (2011) 693-696.
DOI URL |
[48] | R.Z. Wu, Z.K. Qu, M.L. Zhang, Rev. Adv. Mater. Sci. 24 (2010) 35-43. |
[49] |
A. Yamamoto, T. Ashida, Y. Kouta, K. Kim, S. Fukumoto, H. Tsubakino, Mater. Trans. 44 (2003) 619-624.
DOI URL |
[50] |
T. Wang, T. Zhu, J. Sun, R. Wu, M. Zhang, J. Magnes. Alloy. 3 (2015) 345-351.
DOI URL |
[51] |
C. Cui, L. Wu, R. Wu, J. Zhang, M. Zhang, J. Alloys Compd. 509 (2011) 9045-9049.
DOI URL |
[52] |
H. Ji, G. Wu, W. Liu, X. Liang, G. Liao, D. Ding, Mater. Charact. 159 (2020) 110008.
DOI URL |
[53] |
S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Scr. Mater. 61 (2009) 249-252.
DOI URL |
[54] |
L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, B. Krit, J. Mater. Sci. Technol. 34 (2018) 317-323.
DOI URL |
[55] | O. Sitdikov, R. Kaibyshev, T. Sakai, Mater.Sci.Forum 419-422 (2003) 521-526. |
[56] | A. Galiyev, R. Kaibyshev, T. Sakai, Mater.Sci.Forum 419-422 (2003) 509-514. |
[57] |
Y. Yang, X. Xiong, J. Su, X. Peng, H. Wen, G. Wei, F. Pan, E.J. Lavernia, J. Alloys Compd. 750 (2018) 696-705.
DOI URL |
[58] |
S. Deb, S.K. Panigrahi, M. Weiss, Mater. Charact. 154 (2019) 80-93.
DOI |
[59] |
Q. Chen, D.Y. Shu, J. Lin, Y. Wu, X.S. Xia, S.H. Huang, Z.D. Zhao, O.V. Mishin, G.L. Wu, J. Mater. Sci. Technol. 33 (2017) 690-697.
DOI |
[60] |
W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Acta Mater 57 (2009) 69-76.
DOI URL |
[61] |
J.B. Lee, T.J. Konno, H.G. Jeong, Mater. Sci. Eng. B 161 (2009) 166-169.
DOI URL |
[62] |
Y. Zeng, B. Jiang, Q.R. Yang, G.F. Quan, J.J. He, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 700 (2017) 59-65.
DOI URL |
[63] |
L.W.F. Mackenzie, M. Pekguleryuz, Mater. Sci. Eng. A 480 (2008) 189-197.
DOI URL |
[64] |
T. Liu, Y.D. Wang, S.D. Wu, R.Lin Peng, C.X. Huang, C.B. Jiang, S.X. Li, Scr. Mater. 51 (2004) 1057-1061.
DOI URL |
[65] | H. Ji, G. Yao, H. Li, J. Univ. Sci. Technol. Beijing Mineral Metall. Mater. 15 (2008) 440-443. |
[66] |
F. Cao, B. Zhou, X. Ding, J. Zhang, G. Xu, J. Alloys Compd. 745 (2018) 436-445.
DOI URL |
[67] |
X. Meng, R. Wu, M. Zhang, L. Wu, C. Cui, J. Alloys Compd. 486 (2009) 722-725.
DOI URL |
[68] | M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T.G. Langdon, Mater. Sci. Eng.A 410-411 (2005) 439-442. |
[69] |
T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, Y.B. Xu, Mater. Sci. Eng. A 360 (2003) 345-349.
DOI URL |
[70] | C. Tiari, H. Lu, L. Zhao, Magnes. Technol.(2016) 167-170. |
[71] |
P. Minárik, J. Čížek, J. Veselý, P. Hruška, B. Hadzima, R. Král, Mater. Charact. 127 (2017) 248-252.
DOI URL |
[72] | T. Liu, S.D. Wu, S.X. Li, P.J. Li, Mater. Sci. Eng.A 460-461 (2007) 499-503. |
[73] |
A. Zhilyaev, T. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.
DOI URL |
[74] |
H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Mater. Sci. Eng. A 640 (2015) 443-448.
DOI URL |
[75] |
T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, M. Zhang, Adv. Eng. Mater. 18 (2016) 304-311.
DOI URL |
[76] |
A. Mehrabi, R. Mahmudi, H. Miura, Mater. Sci. Eng. A 765 (2019) 138274.
DOI URL |
[77] |
F. Cao, J. Zhang, X. Ding, G. Xue, S. Liu, C. Sun, R. Su, X. Teng, Mater. Sci. Eng. A 760 (2019) 377-393.
DOI URL |
[78] |
L.M. Wu, W.H. Wang, Y.F. Hsu, S. Trong, J. Alloys Compd. 456 (2008) 163-169.
DOI URL |
[79] |
T. Wang, M. Zhang, Z. Niu, B. Liu, J. Rare Earths 24 (2006) 797-800.
DOI URL |
[80] |
L. Bao, Q. Le, Z. Zhang, J. Cui, Q. Li, J. Magnes. Alloy. 1 (2013) 139-144.
DOI URL |
[81] |
Q.Z. Peng, H.T. Zhou, F.H. Zhong, H.B. Ding, X. Zhou, R.R. Liu, T. Xie, Y. Peng, Mater. Des. 66 (2015) 566-574.
DOI URL |
[82] |
J. Li, J. An, Z. Qu, R. Wu, J. Zhang, M. Zhang, Mater. Sci. Eng. A 527 (2010) 7138-7142.
DOI URL |
[83] |
J. Zhao, Z. Li, W. Liu, J. Zhang, L. Zhang, Y. Tian, G. Wu, Mater. Sci. Eng. A 669 (2016) 87-94.
DOI URL |
[84] |
Y. Tang, Q. Le, R.D.K. Misra, G. Su, J. Cui, Mater. Sci. Eng. A 712 (2018) 266-280.
DOI URL |
[85] |
S. Tang, T. Xin, W. Xu, D. Miskovic, G. Sha, Z. Quadir, S. Ringer, K. Nomoto, N. Birbilis, M. Ferry, Nat. Commun. 10 (2019) 1-8.
DOI URL |
[86] |
J.S. Leu, C.T. Chiang, S. Lee, Y.H. Chen, C.L. Chu, J. Mater. Eng. Perform. 19 (2010) 1235-1239.
DOI URL |
[87] |
J. Li, Z. Qu, R. Wu, M. Zhang, Mater. Sci. Eng. A 527 (2010) 2780-2783.
DOI URL |
[88] |
L. Wu, C. Cui, R. Wu, J. Li, H. Zhan, M. Zhang, Mater. Sci. Eng. A 528 (2011) 2174-2179.
DOI URL |
[89] | J. Zhao, J. Zhang, W. Liu, G. Wu, L. Zhang, Mater. Sci. Eng. A 29 (2016) 240-247. |
[1] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[2] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[3] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[4] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
[5] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[6] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[7] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[8] | Yi Yang, Bohua Zhang, Zhichao Meng, Lei Qu, Hao Wang, Sheng Cao, Jianan Hu, Hao Chen, Songquan Wu, Dehai Ping, Geping Li, Lai-Chang Zhang, Rui Yang, Aijun Huang. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy [J]. J. Mater. Sci. Technol., 2021, 91(0): 58-66. |
[9] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[10] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[11] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[12] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[13] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[14] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[15] | Tielong Han, Fucheng Wang, Jiajun Li, Chunnian He, Naiqin Zhao. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status [J]. J. Mater. Sci. Technol., 2021, 92(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||