J. Mater. Sci. Technol. ›› 2021, Vol. 94: 32-46.DOI: 10.1016/j.jmst.2021.02.069
• Research Article • Previous Articles Next Articles
Wei Fana,b, Hua Tana,b,*(), Fengying Zhangc, Zhe Fenga,b, Yongxia Wanga,b, Lai-Chang Zhangd,**(
), Xin Lina,b, Weidong Huanga,b
Received:
2021-01-09
Revised:
2021-02-08
Accepted:
2021-02-28
Published:
2021-05-17
Online:
2021-05-17
Contact:
Hua Tan,Lai-Chang Zhang
About author:
** E-mail addresses: l.zhang@ecu.edu.au, lczhangimr@gmail.com (L.-C. Zhang).Wei Fan, Hua Tan, Fengying Zhang, Zhe Feng, Yongxia Wang, Lai-Chang Zhang, Xin Lin, Weidong Huang. Overcoming the limitation of in-situ microstructural control in laser additive manufactured Ti-6Al-4V alloy to enhanced mechanical performance by integration of synchronous induction heating[J]. J. Mater. Sci. Technol., 2021, 94: 32-46.
Fig. 1. In-situ microstructure control limitation in DED Ti-6Al-4V and its solution. (a) relationship between the processing parameters and relative (a) β-grain size, G-1/2RS-1/4 and (b) α-lath size, thold0.33RC-0.31; (c) linear relationship between G-1/2RS-1/4 and thold0.33RC-0.31; (d) comparison of the relationship between Wβ and Wα in DED Ti-6Al-4V [9, 11, 15, [29], [30], [31], [32], [33], [34], [35]].
Element | Al | V | Fe | C | N | H | O | Ti |
---|---|---|---|---|---|---|---|---|
Content (wt. %) | 6.15 | 4.00 | 0.30 | 0.10 | 0.05 | 0.02 | 0.20 | Balanced |
Table 1 Chemical composition of the Ti-6Al-4V alloy powder used for DED process.
Element | Al | V | Fe | C | N | H | O | Ti |
---|---|---|---|---|---|---|---|---|
Content (wt. %) | 6.15 | 4.00 | 0.30 | 0.10 | 0.05 | 0.02 | 0.20 | Balanced |
Fig. 2. Schematic diagrams of the experimental procedure: (a) deposition pattern of synchronous induction heating assisted laser deposition (SILD) process; (b) Ti-6Al-4V thin wall sample deposited by SILD; (c) preparation of the tensile test specimens and metallographic observation specimen; (d) dimensions of tensile specimens.
Sample | Input current (induction heater), I | Laser power, P | Scanning speed, v | Feed rate of powder, rp | Beam diameter, D | Layer thickness, ΔZ |
---|---|---|---|---|---|---|
0-1000 | 0 A | 1000 W | 400 mm/min | 10 g/min | 3 mm | 0.5 mm |
100-1000 | 100 A | 1000 W | ||||
200-1000 | 200 A | 1000 W | ||||
200-850 | 200 A | 850 W | ||||
200-700 | 200 A | 700 W |
Table 2 DED processing parameters used for synchronous induction assisted laser deposition experiments.
Sample | Input current (induction heater), I | Laser power, P | Scanning speed, v | Feed rate of powder, rp | Beam diameter, D | Layer thickness, ΔZ |
---|---|---|---|---|---|---|
0-1000 | 0 A | 1000 W | 400 mm/min | 10 g/min | 3 mm | 0.5 mm |
100-1000 | 100 A | 1000 W | ||||
200-1000 | 200 A | 1000 W | ||||
200-850 | 200 A | 850 W | ||||
200-700 | 200 A | 700 W |
Temperature, T (°C) | Density, ρ (kg/m3) | Thermal conductivity, λ (W/(m°C)) | Heat capacity, c (J/(kg°C)) |
---|---|---|---|
20 | 4420 | 7.0 | 546 |
205 | 4395 | 8.8 | 574 |
500 | 4350 | 12.6 | 651 |
995 | 4282 | 22.7 | 753 |
1100 | 4267 | 19.3 | 641 |
1200 | 4252 | 21.0 | 660 |
1600 | 4198 | 25.8 | 732 |
1650 | 3886 | 83.5 | 831 |
2000 | 3818 | 83.5 | 831 |
Table 3 Thermo-physical properties of Ti-6Al-4V alloy for calculation [39]
Temperature, T (°C) | Density, ρ (kg/m3) | Thermal conductivity, λ (W/(m°C)) | Heat capacity, c (J/(kg°C)) |
---|---|---|---|
20 | 4420 | 7.0 | 546 |
205 | 4395 | 8.8 | 574 |
500 | 4350 | 12.6 | 651 |
995 | 4282 | 22.7 | 753 |
1100 | 4267 | 19.3 | 641 |
1200 | 4252 | 21.0 | 660 |
1600 | 4198 | 25.8 | 732 |
1650 | 3886 | 83.5 | 831 |
2000 | 3818 | 83.5 | 831 |
Fig. 3. Grain evolution of the SILDed Ti-6Al-4V: Optical microstructures of (a) 0-1000, (b) 100-1000, (c) 200-1000, (d) 200-850, and (e) 200-700 samples; the statistical results of the grain width and evolution trend with (f) input current and (g) laser power.
Fig. 4. The α phases in the prior β-grain under different SILD processing parameters: SEM images of (a) 0-1000, (b) 100-1000, (c) 200-1000, (d) 200-850, and (e) 200-700 samples.
Fig. 5. Statistical results of the fraction, width and aspect ratio of α-laths under different SILD parameters: (a) fraction with different input current; (b) fraction with different laser power; (c) width with different input current; (d) width with different laser power; (e) aspect ratio with different input current; (f) aspect ratio with different laser power.
Fig. 6. Relationship between the β-grain width (Wβ) and α-lath width (Wα) in SILD Ti-6Al-4V: the influence of (a) input current and (b) laser power on the β-grains and α-laths, evaluated by the value of Wβ/Wα; (c) comparison of the relationship between Wβ and Wα in DED and SILD.
Parameters | values |
---|---|
Laser absorptivity of Ti-6Al-4V, δ | 0.3 |
Heat convection coefficient of the substrate, hsub | 100 W/(m2°C) |
Heat convection coefficient of the deposition, hdep | 7 W/(m2°C) |
Heat emissivity coefficient of the deposition, ε | 0.7 |
Ambient temperature of the substrate, Tini | 25°C |
Heat intensity of induction heating, QI | 315 W/(mm3 A) |
Substrate size, Ss | 72 mm × 3 mm × 50 mm |
Mesh size, Sm | 3 mm × 3 mm × 0.5 mm |
Table 4 Parameters used in simulation [22]
Parameters | values |
---|---|
Laser absorptivity of Ti-6Al-4V, δ | 0.3 |
Heat convection coefficient of the substrate, hsub | 100 W/(m2°C) |
Heat convection coefficient of the deposition, hdep | 7 W/(m2°C) |
Heat emissivity coefficient of the deposition, ε | 0.7 |
Ambient temperature of the substrate, Tini | 25°C |
Heat intensity of induction heating, QI | 315 W/(mm3 A) |
Substrate size, Ss | 72 mm × 3 mm × 50 mm |
Mesh size, Sm | 3 mm × 3 mm × 0.5 mm |
Fig. 7. Calculated temperature field during the 20th layer deposition process under different laser-induction parameters: (a) when the laser scans across the middle point of the 20th layer; (b) 10 s cooling after the 20th layer deposition process.
Fig. 8. Calculated thermal cycles at middle point of the 20th layer under different SILD parameters and corresponding temperature distributions when laser scans across the middle point of the 20th layer with different: (a) input current and (b) laser power.
Fig. 9. Solidification conditions and solid-phase transformation conditions under different SILD parameters: (a) the temperature gradient in front of solid-liquid interface and solidification rate; (b) the cooling rate at Tβ and hold time in the two-phase region; (c) the influence of input current on the ratio of relative Wβ / relative Wα; (d) the influence of laser power on the ratio of relative Wβ / relative Wα.
Sample label | 0-1000 | 100-1000 | 200-1000 | 200-850 | 200-700 |
---|---|---|---|---|---|
Hardness (Hv) | 385±15 | 360±8 | 340±5 | 345±5 | 367±8 |
Table 5 Vickers hardness test results for SILD samples.
Sample label | 0-1000 | 100-1000 | 200-1000 | 200-850 | 200-700 |
---|---|---|---|---|---|
Hardness (Hv) | 385±15 | 360±8 | 340±5 | 345±5 | 367±8 |
Fig. 12. Tensile test results for samples under different laser-induction parameters: (a) engineering stress vs. strain; (b) comparison of mechanical properties for Ti-6Al-4V fabricated by DED, DED+HT and SILD [5, 11, 35, [43], [44], [45], [46], [47], [48], [49]].
Fig. 14. Relationship between microstructure size and mechanical properties: (a) the influence of Wβ on Vickers hardness; (b) the influence of Wα on Vickers hardness; (c) the influence of Wβ on yield strength; (d) the influence of Wα on yield strength; YS data fitted by Hall-Petch relationship with (e) Wβ and with (f) Wα.
Fig. 15. EBSD and SEM results of deformed Ti-6Al-4V sample fabricated by SILD: (a) the band contrast map; (b) IPF map; (c) kernel average misorientation map; (d) schematic diagram of the dislocation slip; (e) micrograph of the longitudinal section close to the fracture surface. The results indicate that the dislocations are preferred to pile up at the α/β interfaces thereby resulting in voids and cracks.
[1] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tool Manuf. 133 (2018) 85-102, doi: 10.1016/j.ijmachtools.2018.06.003.
DOI URL |
[2] |
L.C. Zhang, L.Y. Chen, L.Q. Wang, Adv. Eng. Mater. 22 (2020) 1901258, doi: 10.1002/adem.201901258.
DOI |
[3] |
A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.S. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakr-ishna, A .A. Zadpoor, J. Alloys Compd. 804 (2019) 163-191, doi: 10.1016/j.jallcom.2019.04.255.
DOI URL |
[4] |
X.H Wu, J. Liang, J.F. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Des. 25 (2004) 137-144, doi: 10.1016/j.matdes.2003.09.009.
DOI URL |
[5] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta. Mater. 87 (2015) 309-320 https://dx. doi. org/10.1016/j.actamat.2014.12.054.
DOI URL |
[6] |
A.E. Wilson-Heid, Z.Q. Wang, B. McCornac, A.M. Beese, Mater. Sci. Eng,. A 706 (2017) 287-294 https://dx.doi.org/ , doi 10.1016/j.msea.2017.09.017.
DOI URL |
[7] |
C.M. Liu, Y. Lu, X.J. Tian, D. Liu, Mater. Sci. Eng. A 661 (2016) 145-151 https://dx.doi.org/ , doi 10.1016/j.msea.2016.03.034.
DOI URL |
[8] |
B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133 (2017) 120-133 https://dx.doi.org/ , doi 10.1016/j.actamat.2017.05.025.
DOI URL |
[9] |
Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W.D. Huang, J. Mater. Sci. Technol. 33 (2017) 675-681 https://dx.doi.org/ , doi 10.1016/j.jmst.2016.09.026.
DOI URL |
[10] |
A.M. Beese, Carroll B.E, JOM 68 (2016) 724-734, doi: 10.1007/s11837-015-1759-z.
DOI URL |
[11] |
Z. Zhao, J. Chen, H. Tan, X. Lin, W.D. Huang, Opt. Laser. Technol. 92 (2017) 36-43 https://dx.doi.org/ , doi 10.1016/j.optlastec.2016.12.038.
DOI URL |
[12] |
X.P. Tan, Y.H. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97 (2015) 1-16 https://dx.doi.org/ , doi 10.1016/j.actamat.2015.06.036.
DOI URL |
[13] |
P.A. Kobryn, E.H. Moore, S.L. Semiatin, Scr. Mater. 43 (2000) 299-305, doi: 10.1016/s1359-6462(00)00408-5.
DOI URL |
[14] |
Y. Zhai, H. Galarraga, G.A. Lados, Eng. Fail. Anal. 69 (2016) 3-14 http://dx.doi.org/10.1016/j.engfailanal.2016.05.036 .
DOI URL |
[15] |
Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132 (2017) 82-95 https://dx.doi.org/ , doi 10.1016/j.actamat.2017.04.026.
DOI URL |
[16] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 142(2020), doi: 10.1038/s41467-019-13874-z.
DOI |
[17] |
Z. Wang, Z.Q. Liu, C.F. Gao, K.H. Wong, S.J. Ye, Z.Y. Xiao, Surf. Coat. Technol. 381 (2020) 125122, doi: 10.1016/j.surfcoat.2019.125122.
DOI |
[18] |
F. Brückner, C. Leyens, Laser Additive Manufacturing in: M. Brandt (Ed), Wood-head Publishing, 2017, doi: 10.1016/B978-0-08-100433-3.00003-8.
DOI |
[19] |
P. Farahmand, R. Kovacevic, J. Mater. Process. Technol. 222 (2015) 244-258, doi: 10.1016/j.jmatprotec.2015.02.026.
DOI URL |
[20] |
Y.J. Huang, X.Y Zeng, Appl. Surf. Sci. 256 (2010) 5985-5992., doi: 10.1016/j.apsusc.2010.03.106.
DOI URL |
[21] |
W. Fan, H. Tan, X. Lin, W.D. Huang, Mater. Des. 160 (2018) 1096-1105, doi: 10.1016/j.matdes.2018.11.008.
DOI URL |
[22] |
W. Fan, H. Tan, X. Lin, W.D. Huang, Addit. Manuf. 35 (2020) 101267, doi: 10.1016/j.addma.2020.101267.
DOI |
[23] |
W. Kurz, C. Bezençon, M. Gäumann, Sci. Technol. Adv. Mater. 2 (2001) 185-191.
DOI URL |
[24] | J.D. Hunt, London, 1979. |
[25] |
J.D.C. Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, F. Bruneseaux, Acta Mater. 54 (2006) 4261-4271, doi: 10.1016/j.actamat.2006.05.019.
DOI URL |
[26] |
G. Buffa, A. Ducato, L. Fratini, Mater. Sci. Eng. A 581 (2013) 56-65 https://dx.doi.org/ , doi 10.1016/j.msea.2013.06.009.
DOI URL |
[27] |
X.P. Tan, Y.H. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Sci. Rep. 6 (2016) 26039-26048, doi: 10.1038/srep26039.
DOI |
[28] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50, doi: 10.1016/0022-3697(66)90054-3.
DOI URL |
[29] |
M.N. Ahsan, A.J. Pinkerton, R.J. Moat, J. Shackleton, Mater. Sci. Eng. A 528 (2011) 7648-7657, doi: 10.1016/j.msea.2011.06.074.
DOI URL |
[30] |
H. Tan, M.L. Guo, A.T. Clare, X. Lin, J. Chen, W.D. Huang, J. Mater. Sci. Technol. 35 (2019) 2027-2037, doi: 10.1016/j.jmst.2019.05.008.
DOI |
[31] |
X. Wang, F. Lv, L.D. Shen, H.X. Liang, D.Q. Xie, Z.J. Tian, Acta Metall. Sin.(Engl. Lett.) 32 (2019) 1173-1180, doi: 10.1007/s40195-018-0858-6.
DOI |
[32] |
L.Y. Qin, J.H. Men, L.S. Zhang, S. Zhao, C.F. Li, G. Yang, W. Wang, Mater. Sci. Eng,. A 759 (2019) 404-414, doi: 10.1016/j.msea.2019.05.049.
DOI URL |
[33] |
P. Åkerfeldt, M.L. Antti, R. Pederson, Mater. Sci. Eng. A 674 (2016) 428-437 https://dx.doi.org/ , doi 10.1016/j.msea.2016.07.038.
DOI URL |
[34] |
Z. Zhao, J. Chen, X.F. Lu, H. Tan, X. Lin, W.D. Huang, Mater. Sci. Eng. A 691 (2017) 16-24 https://dx.doi.org/ , doi 10.1016/j.msea.2017.03.035.
DOI URL |
[35] |
J. Yao, T. Suo, S.Y. Zhang, F. Zhao, H.T. Wang, J.B. Liu, Y.Z. Chen, Y.L. Li, Mater. Sci. Eng. A 677 (2016) 153-162 https://dx.doi.org/ , doi 10.1016/j.mesa.2016.09. 036.
DOI URL |
[36] |
A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater. Charact. 84 (2013) 153-168 . https://dx.doi/org/10.1016/j.matchar.2013.07.012.
DOI URL |
[37] |
L. Qian, J. Mei, J. Liang, X. Wu, Mater. Sci. Technol. 21 (2005) 597-605, doi: 10.1179/174328405X21003.
DOI URL |
[38] |
R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Acta Mater. 162 (2019) 239-254, doi: 10.1016/j.actamat.2018.09.064.
DOI URL |
[39] |
M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, J. Moya, Z.E. Chen, C. Lee, C. Davies, Addit. Manuf. 18 (2017) 171-185, doi: 10.1016/j.addma.2017.09.002.
DOI |
[40] |
T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243 (1998) 206-211, doi: 10.1016/S0921-5093(97)00802-2.
DOI URL |
[41] |
I. Katzarov, S. Malinov, W. Sha, Metall. Mater. Trans. 33A (2002) 1027-1040 https://dx.doi.org/ , doi 10.1007/s11661-002-0204-4.
DOI URL |
[42] |
J.J. Yang, H.C. Yu, J. Yin, M. Gao, Z.M. Wang, X.Y. Zeng, Mater. Des. 108 (2016) 308-318, doi: 10.1016/j.matdes.2016.06.117.
DOI URL |
[43] |
S.Y. Liu, Y.C. Shin, Mater. Des. 164 (2019) 107552, doi: 10.1016/j.matdes.2018.107552.
DOI |
[44] |
E. Brandl, B. Baufeld, C. Leyens, R. Gault, Phys. Proc. 5 (2010) 595-606, doi: 10.1016/j.phpro.2010.08.087.
DOI URL |
[45] |
F. Wang, J. Mei, H. Jiang, X. Wu, Mater. Sci. Eng. A 445-446 (2007) 461-466, doi: 10.1016/j.msea.2006.09.093.
DOI URL |
[46] | P.A. Kobryn, S.L. Semiatin, in: Proceedings of 12 th Solid Freeform Fabrication Symposium 2001, pp. 179-186. |
[47] |
F.G. Arcella, F.H. Froes, JOM 5 (2000) 28-30, doi: 10.1007/s11837-000-0028-x.
DOI |
[48] |
J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, J. Mater. Eng. Perform. 20 (2011) 203-212, doi: 10.1007/s11665-010-9670-9.
DOI URL |
[49] |
C.L. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah, J. Alloys Compd. 629 (2015) 351-361 https://dx.doi.org/ , doi 10.1016/j.jallcom.2014.12.234.
DOI URL |
[50] |
H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Mater. Sci. Eng. A 685 (2017) 417-428, doi: 10.1016/j.msea.2017.01.019.
DOI URL |
[51] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746, doi: 10.1016/j.msea.2010.01.004.
DOI URL |
[52] |
P.D. Littlewood, T.B. Britton, A.J. Wilkinson, Acta Mater. 59 (2011) 6489-6500, doi: 10.1016/j.actamat.2011.07.016.
DOI URL |
[1] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
[2] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[3] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
[4] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[5] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[6] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[7] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[8] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[9] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[10] | H.L. Wei, F.Q. Liu, L. Wei, T.T. Liu, W.H. Liao. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77(0): 196-208. |
[11] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
[12] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[13] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[14] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[15] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||