J. Mater. Sci. Technol. ›› 2021, Vol. 94: 47-52.DOI: 10.1016/j.jmst.2021.02.071
• Research Article • Previous Articles Next Articles
Pengtao Chenga,b,1, Zhenjia Zhoua,b,1, Jiaxing Chenc, Zongbin Lic, Bo Yangc, Kun Xud, Zhe Lid, Jun Lia,b, Zhengming Zhange, Dunhui Wanga,b,e,*(), Suxin Qianf,*(
), Youwei Dua,b
Revised:
2021-02-06
Published:
2021-12-20
Online:
2021-12-15
Contact:
Dunhui Wang,Suxin Qian
About author:
*E-mail addresses: wangdh@hdu.edu.cn (D. Wang),1Pengtao Cheng and Zhenjia Zhou contributed equally to this work.
Pengtao Cheng, Zhenjia Zhou, Jiaxing Chen, Zongbin Li, Bo Yang, Kun Xu, Zhe Li, Jun Li, Zhengming Zhang, Dunhui Wang, Suxin Qian, Youwei Du. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy[J]. J. Mater. Sci. Technol., 2021, 94: 47-52.
Fig. 1. (a) DSC curve for Ni45Co5Mn37In13 alloy. Tc denotes the Curie temperature of austenite. (b) M(T) curve for Ni45Co5Mn37In13 alloy measured under a magnetic field of 0.05 T.
Fig. 3. (a) M(H) curves for Ni45Co5Mn37In13 alloy measured from 200 K to 350 K; (b) Temperature dependence of ΔSM curves for Ni45Co5Mn37In13 alloy under magnetic fields of 1 T, 2 T and 3 T.
Fig. 4. (a) stress-strain curve for Ni45Co5Mn37In13 alloy at 308 K with a stress up to 200 MPa. The critical stress is about 110 MPa. (b) Stress-strain curves for Ni45Co5Mn37In13 alloy compressed up to 200 MPa at various fixed temperatures. (c) Corresponding time dependence of ΔT curves for Ni45Co5Mn37In13 alloy at the various temperatures. The ΔT are obtained during the unloading process. (d) Temperature dependence of combined caloric effects for Ni45Co5Mn37In13 alloy.
Fig. 5. Concept schematic of a combined caloric cooling system (compression for elastocaloric effect and magnet array for inverse magnetocaloric effect, array in the center represents the magnetic field direction, perpendicular direction has minimal magnetic field intensity, HHEX means hot heat exchanger where heat is rejected, and CHEX is cold heat exchanger where cooling is delivered).
[1] | K.A. GschneidnerJr, V.K. Pecharsky, A.O. Tsokol, Rep. Pro. Phys. 68 (2005) 1479-1539. |
[2] |
V.K. Pecharsky, K.A. Gschneidner Jr, Phys. Rev. Lett. 78 (1997) 4494.
DOI URL |
[3] | J. Lyubina, K. Nenkov, L. Schultz, O. Gutfleisch, Phys. Rev. Lett. 101 (2008) 177203. |
[4] |
O. Tegus, E. Bruck, K. Buschow, F. De Boer, Nature 415 (2002) 150-152.
DOI URL |
[5] |
H. Wada, Y. Tanabe, Appl. Phys. Lett. 79 (2001) 3302-3304.
DOI URL |
[6] | S. Gama, A.A. Coelho, A. de Campos, A.M. Carvalho, F.C. Gandra, P.J. von Ranke, N.A. de Oliveira, Phys. Rev. Lett. 93 (2004) 237202. |
[7] |
F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang, J. Mater. Sci. Technol. 34 (2018) 848.
DOI |
[8] |
Y.K. Zhang, J. Alloys Compd. 787 (2019) 1173.
DOI URL |
[9] |
P. Jia, L.P. Duan, K. Wang, E.G. Wang, J. Mater. Sci. Technol. 35 (2019) 2283.
DOI URL |
[10] |
L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater 194 (2020) 354.
DOI URL |
[11] | L.W. Li, M. Yan, J. Alloys Compd. 823 (2020) 153810. |
[12] |
Z. Li, Z. Li, B. Yang, X. Zhao, L. Zuo, Scripta Mater. 151 (2018) 61-65.
DOI URL |
[13] |
X. Chen, V.B. Naik, R. Mahendiran, R.V. Ramanujan, J. Alloys Compd. 618 (2015) 187-191.
DOI URL |
[14] |
C. Jing, J. Chen, Z. Li, Y. Qiao, B. Kang, S. Cao, J. Zhang, J. Alloys Compd. 475 (2009) 1-4.
DOI URL |
[15] |
K. Liu, S. Ma, C. Ma, X. Han, K. Yu, S. Yang, Z. Zhang, Y. Song, X. Luo, C. Chen, S.U. Rehman, Z. Zhong, J. Alloys Compd. 790 (2019) 78-92.
DOI URL |
[16] |
X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13 (2014) 439-450.
DOI PMID |
[17] |
Z. Lin, S. Li, M. Liu, S.Y. Tsai, J.G. Duh, M. Liu, F. Xu, J. Magn. Magn. Mater. 323 (2011) 1741-1744.
DOI URL |
[18] |
X. Zhang, H. Zhang, M. Qian, L. Geng, Sci. Rep. 8 (2018) 8235.
DOI URL |
[19] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
[20] |
Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater 151 (2018) 41-55.
DOI URL |
[21] |
S. Fahler, U.K. Rosler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Muller, E. Quandt, K. Albe, Adv. Eng. Mater 14 (2012) 10-19.
DOI URL |
[22] | Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 89 (2006) 182507. |
[23] | H.C. Xuan, D.H. Wang, C.L. Zhang, Z.D. Han, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 92 (2008) 102503. |
[24] | H.C. Xuan, L.J. Shen, T. Tang, Q.Q. Cao, D.H. Wang, Y.W. Du, Appl. Phys. Lett. 100 (2012) 172410. |
[25] |
Z. Zhou, P. Wu, G. Ma, B. Yang, Z. Li, T. Zhou, D. Wang, Y. Du, J. Alloys Compd. 792 (2019) 399-404.
DOI URL |
[26] | L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, Z.L. Wang, H.L. Suo, Y. Ren, Y.D. Wang, Appl. Phys. Lett. 108 (2016) 032405. |
[27] | Y. Hu, Z. Li, B. Yang, S. Qian, W. Gan, Y. Gong, Y. Li, D. Zhao, J. Liu, X. Zhao, L. Zuo, D. Wang, Y. Du, APL Mater. 5 (2017) 046103. |
[28] |
R.C. O’Handley, S.J. Murray, M. Marioni, H. Nembach, S.M. Allen, J. Appl. Phys. 87 (20 0 0) 4712-4717.
DOI URL |
[29] |
I. Radelytskyi, M. Pękała, R. Szymczak, D.J. Gawryluk, M. Berkowski, J. Fink-Finowicki, R. Diduszko, V. Dyakonov, H. Szymczak, J. Magn. Magn. Mater. 430 (2017) 16-21.
DOI URL |
[30] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Nat. Mater. 4 (2005) 450-454.
DOI URL |
[31] |
J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, Z.D. Zhang, J. Phys. D: Appl. Phys. 40 (2007) 5523-5526.
DOI URL |
[32] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439 (2006) 957-960.
DOI URL |
[33] | Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Y.W. Du, J. Appl. Phys. 104 (2008) 053906. |
[34] |
B. Emre, S. Yuce, N.M. Bruno, I. Karaman, Intermetallics 106 (2019) 65-70.
DOI URL |
[35] |
P. Entel, V.V. Sokolovskiy, V.D. Buchelnikov, M. Ogura, M.E. Gruner, A. Grunebohm, D. Comtesse, H. Akai, J. Magn. Magn. Mater. 385 (2015) 193-197.
DOI URL |
[36] | Z. Li, Z. Li, D. Li, J. Yang, B. Yang, D. Wang, L. Hou, X. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Appl. Phys. Lett. 115 (2019) 083903. |
[37] |
Y.J. Huang, Q.D. Hu, N.M. Bruno, J.H. Chen, I. Karaman, J.H. Ross, J.G. Li, Scripta Mater 105 (2015) 42-45.
DOI URL |
[38] |
Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Scripta Mater 163 (2019) 14-18.
DOI |
[39] |
D.S. Arnold, A. Tura, A. Ruebsaat-Trott, A. Rowe, Int. J. Refrig. 37 (2014) 99-105.
DOI URL |
[40] |
S.-.M. Kirsch, et al., Energy Technol. 6 (2018) 1567-1587.
DOI URL |
[41] | Z. Yang, D.Y. Cong, L. Huang, Z.H. Nie, X.M. Sun, Q.H. Zhang, Y.D. Wang, Mater. Design 92 (2016) 932-936. |
[42] | R. Millan-Solsona, E. Stern-Taulats, E. Vives, A. Planes, J. Sharma, A.K. Nayak, K.G. Suresh, L. Manosa, Appl. Phys. Lett. 105 (2014) 241901. |
[43] |
Y. Li, W. Sun, D. Zhao, H. Xu, J. Liu, Scripta Mater. 130 (2017) 278-282.
DOI URL |
[44] | B. Lu, F. Xiao, A. Yan, J. Liu, Appl. Phys. Lett. 105 (2014) 161905. |
[45] |
W. Sun, J. Liu, B. Lu, Y. Li, A. Yan, Scripta Mater. 114 (2016) 1-4.
DOI URL |
[46] |
K. Ebrahimi, G.F. Jones, A.S. Fleischer, Renew. Sustain. Energy Rev. 31 (2014) 622.
DOI URL |
[47] |
J.C. Kuo, M.C. Chen, Food Control 21 (2010) 559.
DOI URL |
[48] |
C. Zimm, et al., Int. J. Refrig. 29 (2006) 1302.
DOI URL |
[49] | D. Eriksen, Technical University of Denmark, 2016. |
[50] |
K. Engelbrecht, et al., Int. J. Refrig. 35 (2012) 1498.
DOI URL |
[51] | A. Kitanovski, et al., Magnetocaloric Energy Conversion. Green Energy and Technology, Springer International Publishing, 2015. |
[1] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
[2] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[3] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
[4] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
[5] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
[6] | F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang. A new scale for optimized cryogenic magnetocaloric effect in ErAl2@Al2O3 nanocapsules [J]. J. Mater. Sci. Technol., 2018, 34(5): 848-854. |
[7] | Jun Li, Song Ma, Han Wang, Wenjie Gong, Jingjing Jiang, Shaojie Li, Yong Wang, Dianyu Geng, Zhidong Zhang. Enhanced Cryogenic Magnetocaloric Effect Induced by Small Size GdNi5 Nanoparticles [J]. J. Mater. Sci. Technol., 2014, 30(10): 973-978. |
[8] | Naikun Sun, Yaobiao Li, Feng Liu, Tongbo Ji. Magnetism and Magnetocaloric Properties of Mn3Zn1−xSnxC and Mn3−xCrxZnC Compounds [J]. J. Mater. Sci. Technol., 2012, 28(10): 941-945. |
[9] | Li'an Han Changle Chen. Magnetocaloric and Colossal Magnetoresistance Effect in Layered Perovskite La1:4Sr 1:6Mn2O7 [J]. J Mater Sci Technol, 2010, 26(3): 234-236. |
[10] | Wei WU, Zai FENG, Lijun GUO. Estimation on Magnetic Refrigeration Material (Gd1-xREx)5Si4 (RE=Dy, Ho) [J]. J Mater Sci Technol, 2006, 22(06): 839-842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||