J. Mater. Sci. Technol. ›› 2021, Vol. 86: 56-63.DOI: 10.1016/j.jmst.2020.12.072
• Research Article • Previous Articles Next Articles
Xuanwei Zhaoa,b,c, Xianming Zhenga,b,c, Xiaohua Luoa,b,*(), Fei Gaod,e, Hai Zenga,b,c, Guang Yua,b,c, Sajjad Ur Rehmana, Changcai Chena,b, Shengcan Maa,b,*(
), Weijun Rend, Zhenchen Zhonga
Received:
2020-11-11
Accepted:
2020-12-21
Published:
2021-09-30
Online:
2021-09-24
Contact:
Xiaohua Luo,Shengcan Ma
About author:
shengcanma801@gmail.com (S. Ma).Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal[J]. J. Mater. Sci. Technol., 2021, 86: 56-63.
Fig. 1. (a) and (b) Schematic diagrams of crystallographic structure of the RNi compounds which crystallize in the FeB-type structure. (c) The powder XRD pattern of ErNi compound recorded at room temperature. (d) The XRD pattern of the crystal. The inset is an image of ErNi crystal plane.
Fig. 2. (a) The temperature dependences of zero-field-cooling (ZFC) and field-cooling (FC) magnetization under H = 1 kOe for ErNi single crystal along the [100], [011] and $\left[ 0\bar{1}1 \right]$ directions. (b) Magnetization hysteresis loops measured at 2 K. (c) The temperature dependence of specific heat of ErNi single crystal. (d) The temperature dependence of resistively of ErNi single crystal.
Fig. 3. (a)-(d) Magnetic field dependence of magnetizations at different temperatures along the [100], [011] and $\left[ 0\bar{1}1 \right]$ directions, respectively. The magnetization curves shown in (b)-(d) are plotted in a temperature interval of 4 K for clarity.
Materials | TM (K) | -ΔSmaxM (J (kg K)-1) | ΔTmaxad (K) | Refs. | ||
---|---|---|---|---|---|---|
2 T | 5 T | 2 T | 5 T | |||
ErNi (H // [100]) | 5, 11 | 23.4 | 36.1 | 7.6 | 14.4 | This work |
ErNi (poly) | 7, 11 | 29.6 | 7.3 | [ | ||
TmZn | 8 | 19.6 | 26.9 | 3.3 | 8.6 | [ |
TmGa | 12, 15 | 20.6 | 34.2 | 5.0 | 9.1 | [ |
TmCuAl | 2.8 | 17.2 | 24.3 | 4.6 | 9.4 | [ |
HoCuAl | 11.2 | 17.5 | 30.6 | [ | ||
HoCuSi | 7 | 16.7 | 33.1 | [ | ||
HoNiSi | 3.8 | 19.0 | 28.4 | [ | ||
HoNiAl | 5, 14 | 12.3 | 23.6 | 4.0 | 8.7 | [ |
GdCoC2 | 15 | 16.0 | 28.4 | [ | ||
ErMn2Si2 | 4.5 | 20.0 | 25.2 | 5.4 | 12.9 | [ |
Gd2FeAlO6 | <2 | 5.2 | 18.5 | [ | ||
Gd2ZnMnO6 | 6.4 | 15.2 | [ | |||
ErAl2@Al2O3 | 20 | 14.3 | [ |
Table 1 Transition temperature (TM, i.e., TC, TN or TSR), the maximum magnetic entropy change (ΔSmaxM) and the adiabatic temperature change (ΔTmaxad) under the field changes of 0-20 kOe and 0-50 kOe for ErNi single crystal together with other materials exhibiting large magnetocaloric response below 20 K.
Materials | TM (K) | -ΔSmaxM (J (kg K)-1) | ΔTmaxad (K) | Refs. | ||
---|---|---|---|---|---|---|
2 T | 5 T | 2 T | 5 T | |||
ErNi (H // [100]) | 5, 11 | 23.4 | 36.1 | 7.6 | 14.4 | This work |
ErNi (poly) | 7, 11 | 29.6 | 7.3 | [ | ||
TmZn | 8 | 19.6 | 26.9 | 3.3 | 8.6 | [ |
TmGa | 12, 15 | 20.6 | 34.2 | 5.0 | 9.1 | [ |
TmCuAl | 2.8 | 17.2 | 24.3 | 4.6 | 9.4 | [ |
HoCuAl | 11.2 | 17.5 | 30.6 | [ | ||
HoCuSi | 7 | 16.7 | 33.1 | [ | ||
HoNiSi | 3.8 | 19.0 | 28.4 | [ | ||
HoNiAl | 5, 14 | 12.3 | 23.6 | 4.0 | 8.7 | [ |
GdCoC2 | 15 | 16.0 | 28.4 | [ | ||
ErMn2Si2 | 4.5 | 20.0 | 25.2 | 5.4 | 12.9 | [ |
Gd2FeAlO6 | <2 | 5.2 | 18.5 | [ | ||
Gd2ZnMnO6 | 6.4 | 15.2 | [ | |||
ErAl2@Al2O3 | 20 | 14.3 | [ |
Fig. 5. (a, b) The rotating magnetic entropy change$\Delta {{S}_{\text{R}}}$ induced by the rotation of the magnetic field from the [011] to [100] direction under the different fields. (c) The field dependence of $\Delta {{S}_{\text{R}}}$ under different temperatures. (d) The rotating magnetic entropy change $\Delta {{S}_{\text{R}}}$ induced by the rotation of the magnetic field from the [011] to $\left[ 0\bar{1}1 \right]$ direction under the different fields. (e) The maximum rotating entropy changes for the materials reported previously under the different fields. The solid and the hollow symbols present the results under 20 kOe and 50 kOe, respectively.
Fig. 6. (a) The adiabatic temperature change of ErNi single crystal as a function of magnetic field at 12.5 K along the [100], [011] and $\left[ 0\bar{1}1 \right]$ directions. (b) The adiabatic temperature change is related to the rotation of the field from the [011] to [100] direction at different temperatures.
Fig. 7. (a)-(c) Magnetic field dependences of magnetoresistance obtained in the temperature range of 2-12 K, with the current along the [100] and the magnetic fields applied parallel to the [100], [011] and $\left[ 0\bar{1}1 \right]$ directions, respectively. (d) The temperature dependence of magnetoresistance in a magnetic field of 50 kOe.
[1] |
S. Gupta, K.G. Suresh, J. Alloys. Compd. 618(2015) 562-606.
DOI URL |
[2] |
X.Q. Zheng, B.G. Shen, Chin. Phys. B 26 (2017), 027501.
DOI URL |
[3] | E.P. Wohlfarth, North Holland publishing company, 1980. |
[4] |
K.A. Gschneidner Jr, V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68(2005) 1479-1539.
DOI URL |
[5] |
W.J. Ren, Z.D. Zhang, Chin. Phys. B 22 (2013), 077507.
DOI URL |
[6] |
V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez A. Conde, Prog. Mater. Sci. 93(2018) 112-232.
DOI URL |
[7] |
V.K. Pecharsky, K.A. Gschneidner Jr, Rev. Lett 78 (1997) 4494-4497.
DOI URL |
[8] |
F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78(2001) 3675-3677.
DOI URL |
[9] |
J. Chen, B.G. Shen, Q.Y. Dong, F.X. Hu, J.R. Sun, Appl. Phys. Lett. 96(2010), 152501.
DOI URL |
[10] |
L.W. Li, M. Yan, J. Alloys. Compd. 823(2020), 153810.
DOI URL |
[11] |
Y.K. Zhang, J. Alloys. Compd. 787(2019) 1173-1186.
DOI URL |
[12] | F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang, J. Mater. Sci 34(2018) 848-854. |
[13] | P. Jia, L.P. Duan, K. Wang, E.G. Wang, J. Mater. Sci 35(2019) 2283-2287. |
[14] |
L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater. 194(2020) 354-365.
DOI URL |
[15] |
L.W. Li, Y. Yuan, Y. Qi, Q. Wang, S.Q. Zhou, Mater. Res. Lett. 6(2017) 67-71.
DOI URL |
[16] |
M. Balli, S. Jandl, P. Fournier, A. Kedous-Lebouc, Appl. Phys. Rev. 4(2017), 021305.
DOI URL |
[17] |
S.A. Nikitin, K.P. Skokov, Y.S. Koshkid’ko, Y.G. Pastushenkov, T.I. Ivanova, Phys. Rev. Lett. 105(2010), 137205.
PMID |
[18] |
J.L. Jin, X.Q. Zhang, G.K. Li, Z.H. Cheng, L. Zheng, Y. Lu, Phys. Rev. B 83 (2011), 184431.
DOI URL |
[19] |
Y.S. Jia, T. Namiki, S. Kasai, L.W. Li, K. Nishimura, J. Alloys. Compd. 757(2018) 44-48.
DOI URL |
[20] |
H. Zhang, C.F. Xing, H. Zhou, X.Q. Zheng, X.F. Miao, L.H. He, J. Chen, Acta Mater. 193(2020) 210-220.
DOI URL |
[21] |
K. Wang, M.X. Zhang, J. Liu, H.B. Luo, J. Sun, J. Appl. Phys. 125(2019), 243901.
DOI URL |
[22] |
S. Gupta, R. Rawat, K.G. Suresh, Appl. Phys. Lett. 105(2014), 012403.
DOI URL |
[23] |
N.K. Singh, K.G. Suresh, R. Nirmala, A.K. Nigam, S.K. Malik, J. Appl. Phys. 101(2007), 093904.
DOI URL |
[24] | R.E. Walline, W.E. Wallace, J. Phys. Chem. Solids 41 (1964) 1587-1591. |
[25] |
M. Careirom, D. Gignoux, Solid State Commun. 25(1978) 735-737.
DOI URL |
[26] | R. Mallik, E.V. Sampathkumaran, P.L. Paulose, V. Nagarajan, Phys. Rev. B 55 (1997) 0163-1829. |
[27] |
A.O. Pecharsky, Yu. Mozharivskyj, K.W. Dennis, K.A. Gschneidner, Phys. Rev. B 68 (2003), 134452.
DOI URL |
[28] |
S.K. Tripathy, K.G. Suresh, R. Nirmala, A.K. Nigam, S.K. Alik, Solid State Commun. 134(2005) 323-327.
DOI URL |
[29] |
P. Kumar, K.G. Suresh, A.K. Nigam, O. Gutfleisch, J. Phys. D Appl. Phys. 41(2008), 245006.
DOI URL |
[30] |
N. Kinami, K. Wakiya, M. Uehara, J. Gouchi, Y. Uwatoko, I. Umehara, J. Appl. Phys. 57(2018), 103001.
DOI URL |
[31] |
X.Q. Zheng, B. Zhang, H. Wu, F.X. Hu, Q.Z. Huang, B.G. Shen, J. Appl. Phys. 120(2016), 163907.
DOI URL |
[32] |
A. Sankar, J.A. Chelvane, A.V. Morozkin, AIP Adv. 8(2018), 056208.
DOI URL |
[33] |
R. Rajivgandhi, J. Arout Chelvane, S. Quezado, S.K. Malik, R. Nirmala, J. Magn. Magn 433(2017) 169-177.
DOI URL |
[34] |
H.M. Rietveld, J. Appl. Cryst. 2(1969) 65.
DOI URL |
[35] |
E. Jobiliong, J.S. Brooks, E.S. Choi, Phys. Rev. B 72 (2005), 104428.
DOI URL |
[36] |
S. Nallamuthu, S. Selva Chandrasekaran, P. Murugan, M. Reiffers, R. Nagalakshmi, J. Magn. Magn 416(2016) 373-383.
DOI URL |
[37] |
L.J. Meng, C. Xu, Y. Yuan, Y. Qi, S.Q. Zhou, L.W. Li, RSC Adv. 6(2016) 74765-74768.
DOI URL |
[38] |
Z.J. Mo, J. Shen, L.Q. Yan, C.C. Tang, J. Lin, J.F. Wu, B.G. Shen, Appl. Phys. Lett. 103(2013), 052409.
DOI URL |
[39] |
Z.J. Mo, J. Shen, L.Q. Yan, J.F. Wu, L.C. Wang, Appl. Phys. Lett. 102(2013), 192407.
DOI URL |
[40] |
L.C. Wang, Q.Y. Dong, Z.J. Mo, Z.Y. Xu, F.X. Hu, J.R. Sun, B.G. Shen, J. Appl. Phys. 114(2013), 163915.
DOI URL |
[41] |
L.W. Li, K. Nishimura, W.D. Hutchison, Z.H. Qian, D.X. Huo, Appl. Phys. Lett. 100(2012), 152403.
DOI URL |
[42] |
B.B. Wu, Y.K. Zhang, D. Guo, J. Wang, Z.M. Ren, Ceram. Int. 47(2020) 6290-6297.
DOI URL |
[43] |
L.H. Yin, J. Yang, P. Tong, X. Luo, C.B. Park, K.W. Shin, W. Song, J. Dai, K.H. Kim, X. Zhu, Y. Sun, J. Mater. Chem. C 4 (2016) 11198-11204.
DOI URL |
[44] |
H. Zhang, Y.W. Li, E. Liu, Y. Ke, J.L. Jin, Y. Long, B.G. Shen, Sci. Rep. 5(2015) 11929.
DOI PMID |
[45] |
M. Balli, S. Jandl, P. Fournier, M.M. Gospodinov, Appl. Phys. Lett. 104(2014), 232402.
DOI URL |
[46] |
R.D. dos Reis, L.M. da Silva, A.O. dos Santos, A.M.N. Medina, J. Alloys. Compd. 582(2014) 461-465.
DOI URL |
[47] |
X.Q. Zhang, Y.D. Wu, Y. Ma, Q.Y. Dong, Y.J. Ke, Z.H. Cheng, AIP Adv. 7(2017), 056418.
DOI URL |
[48] |
M. Balli, S. Jandl, P. Fournier, J. Vermette, D.Z. Dimitrov, Phys. Rev. B 98 (2018), 184414.
DOI URL |
[49] | K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, C.B. Zimm, Mater. Sci. Forum. 69(1999) 315-317. |
[50] |
Y.D. Wu, Y.L. Qin, X.H. Ma, R.W. Li, Y.Y. Wei, Z.F. Zi, J. Alloys. Compd. 777(2019) 673-678.
DOI URL |
[51] |
V. Sechovský, L. Havela, K. Prokeš, H. Nakotte, F.R. de Boer, E. Brück, J. Appl. Phys. 76(1994) 6913.
DOI URL |
[52] | L. Zhang, W.J. Ren, X.H. Luo, Z.D. Zhang, J. Mater. Sci 35(2019) 764-768. |
[1] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[2] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
[3] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
[4] | F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang. A new scale for optimized cryogenic magnetocaloric effect in ErAl2@Al2O3 nanocapsules [J]. J. Mater. Sci. Technol., 2018, 34(5): 848-854. |
[5] | Jun Li, Song Ma, Han Wang, Wenjie Gong, Jingjing Jiang, Shaojie Li, Yong Wang, Dianyu Geng, Zhidong Zhang. Enhanced Cryogenic Magnetocaloric Effect Induced by Small Size GdNi5 Nanoparticles [J]. J. Mater. Sci. Technol., 2014, 30(10): 973-978. |
[6] | Naikun Sun, Yaobiao Li, Feng Liu, Tongbo Ji. Magnetism and Magnetocaloric Properties of Mn3Zn1−xSnxC and Mn3−xCrxZnC Compounds [J]. J. Mater. Sci. Technol., 2012, 28(10): 941-945. |
[7] | Li'an Han Changle Chen. Magnetocaloric and Colossal Magnetoresistance Effect in Layered Perovskite La1:4Sr 1:6Mn2O7 [J]. J Mater Sci Technol, 2010, 26(3): 234-236. |
[8] | Weiguang Zhang,O. Tegus,Yongli Wu,Yirgeltu,Huanying Yan,Song Lin. Magnetocaloric Effect in MnCo1-xAlxGe Compounds [J]. J Mater Sci Technol, 2009, 25(06): 781-784. |
[9] | Mingguang Wang,Hengqiang Ye. Microstructure of Epitaxial La0.7Ca0.3MnO3 Thin Films Deposited by Direct Current Magnetron Sputtering on LaAlO3 Substrate [J]. J Mater Sci Technol, 2009, 25(03): 336-340. |
[10] | Gang JI, Shishen YAN, Yanxue CHEN, Qiang CAO, Wei XIA, Yihua LIU, Liangmo MEI, Ze ZHANG. Spin injection from ferromagnetic semiconductor CoZnO into ZnO [J]. J Mater Sci Technol, 2008, 24(03): 415-418. |
[11] | Wei WU, Zai FENG, Lijun GUO. Estimation on Magnetic Refrigeration Material (Gd1-xREx)5Si4 (RE=Dy, Ho) [J]. J Mater Sci Technol, 2006, 22(06): 839-842. |
[12] | Yuding HE, Shejun HU, Jian LI, Guangrong XIE. Effect of Co Ion Implantation on GMR of [NiFeCo(10 nm)/Ag(10 nm)]×20 Multilayer Film [J]. J Mater Sci Technol, 2005, 21(04): 593-598. |
[13] | Suwei YAO, Haixia WU, Weiguo ZHANG, Hongzhi WANG. X-ray and Magnetoresistance Measurements of Electrodeposited Cu-Co Granular Films [J]. J Mater Sci Technol, 2005, 21(03): 307-310. |
[14] | Feifei LI, Xiufeng HAN, Lixian JIANG, Jing ZHAO, Lei WANG, Rehana Sharif. TMR at 4.2 K for Amorphous Magnetic-Tunnel-Junctions with Co60Fe20B20 as Free and Pinned Layers [J]. J Mater Sci Technol, 2005, 21(03): 289-291. |
[15] | Hongwei QIN, Jifan HU, Juan CHEN, Hongdong NIU, Luming ZHU, Zhuo WANG. The Tb Doping Effect on the Room Temperature Magnetoresistance in (La1-xTbx)0.67Sr0.33MnO3 (x≤ 0.4) [J]. J Mater Sci Technol, 2004, 20(03): 350-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||