J. Mater. Sci. Technol. ›› 2021, Vol. 76: 122-128.DOI: 10.1016/j.jmst.2020.11.018
• Research Article • Previous Articles Next Articles
Yu Fua, Wenlong Xiaoa,b,*(), Junshuai Wanga, Lei Rena, Xinqing Zhaoa, Chaoli Maa,b
Received:
2020-07-16
Revised:
2020-08-14
Accepted:
2020-08-30
Published:
2021-06-20
Online:
2020-11-06
Contact:
Wenlong Xiao
About author:
*Key Laboratory of Aerospace Advanced Materials andPerformance of Ministry of Education, School of Materials Science and Engineering,Beihang University, Beijing 100191, China.E-mail address: wlxiao@buaa.edu.cn (W. Xiao).Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength[J]. J. Mater. Sci. Technol., 2021, 76: 122-128.
Fig. 2. Schematic variation of Young’s modulus and yield strength of the α strengthened α + β dual-phase Ti alloys as a function of the volume fraction of α phase based on Eqs. (3) and (4), respectively.
Fig. 4. (a) Optical micrography, (b) XRD pattern, (c) BF-TEM image and SAED pattern (inset) recorded from the yellow circled area and (d) DF-TEM image and SAED pattern (inset) of the ω phase of the ST alloy.
Fig. 5. Microstructure of the RA alloy: (a) secondary electron SEM image, (b) and (c) BF-TEM image and corresponding SAED pattern, respectively and (d) SAED pattern of the yellow circled area highlighted in (b).
Phase | Nb | Zr | Sn | Fe | Ti |
---|---|---|---|---|---|
α phase | 10.78 | 5.02 | 4.69 | 0.72 | Bal. |
β phase | 21.28 | 5.67 | 4.33 | 1.64 | Bal. |
Table 1 Average elemental redistribution between α and β of the RA specimen based on EDS analysis (wt.%).
Phase | Nb | Zr | Sn | Fe | Ti |
---|---|---|---|---|---|
α phase | 10.78 | 5.02 | 4.69 | 0.72 | Bal. |
β phase | 21.28 | 5.67 | 4.33 | 1.64 | Bal. |
Fig. 7. Mechanical properties of the alloys: (a) tensile stress-strain curves with inset table listing the mechanical properties, where El. and UTS stand for total tensile elongation and ultimate tensile strength, respectively and (b) enlarged tensile stress-strain curves showing the elastic regimes.
[1] |
M. Abdel-Hady Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater., 20 (2013), pp. 407-415
DOI PMID |
[2] |
M. Niinomi, L. Yi, M. Nakai, H. Liu, L. Hua, Regen. Biomater., 3 (2016), pp. 173-185
DOI PMID |
[3] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci., 54 (2009), pp. 397-425
DOI URL |
[4] |
S. Guo, Q. Meng, X. Zhao, Q. Wei, H. Xu, Sci. Rep., 5 (2015), p. 14688
DOI URL |
[5] |
A.H. Plaine, M.R. da Silva, C. Bolfarini, J. Alloys. Compd., 800 (2019), pp. 35-40
DOI URL |
[6] | L.D. Zardiackas, M.J. Kraay, H.L. Frees, ASTM Int. (2005) |
[7] |
M. Niinomi, Mater. Sci. Eng. A, 243 (1998) 231-136
DOI URL |
[8] |
D. Preisler, M. Janecek, P. Harcuba, J. Dzugan, K. Halmesova, J. Malek, A. Veverkova, J. Strasky, Materials, 12 (2019), p. 4233
DOI URL |
[9] | ASTM, Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130) (2013), p. F1713 |
[10] |
Y. Fu, J. Wang, W. Xiao, X. Zhao, C. Ma, Prog. Nat. Sci. Mater. Int., 30 (2020), pp. 100-105
DOI URL |
[11] |
F. Haftlang, A. Zarei-Hanzaki, H.R. Abedi, M.A. Kalaei, J. Nemecek, J. Málek, Mater. Sci. Eng. A, 771 (2020), 138583
DOI URL |
[12] |
W. Wan, H. Liu, Y. Jiang, D. Yi, R. Yi, Q. Gao, D. Wang, Q. Yang, Mater. Sci. Eng. A, 637 (2015), pp. 130-138
DOI URL |
[13] |
Y.D. Shi, L.N. Wang, S.X. Liang, Q. Zhou, B. Zheng, Mater. Sci. Eng. A, 674 (2016), pp. 696-700
DOI URL |
[14] |
Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Acta Biomater., 3 (2007), pp. 277-286
PMID |
[15] |
T. Homma, A. Arafah, D. Haley, M. Nakai, M. Niinomi, M.P. Moody, Mater. Sci. Eng. A, 709 (2018), pp. 312-321
DOI URL |
[16] |
P. Barriobero-Vila, G. Requena, S. Schwarz, F. Warchomicka, T. Buslaps, Acta Mater., 95 (2015), pp. 90-101
DOI URL |
[17] |
Z.J. Zhang, Y.K. Zhu, P. Zhang, Y.Y. Zhang, W. Pantleon, Z.F. Zhang, Phys. Rev. B, 95 (2017), 134107
DOI URL |
[18] |
S. Huang, Y. Zhao, J. Yu, C. Lin, C. Wu, W. Jia, J. Alloys. Compd., 826 (2020), 154128
DOI URL |
[19] |
G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A, 756 (2019), pp. 156-160
DOI URL |
[20] |
Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Scr. Mater., 172 (2019), pp. 77-82
DOI URL |
[21] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater., 62 (2014), pp. 141-155
DOI URL |
[22] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater., 178 (2020), pp. 422-427
DOI URL |
[23] | S. Ankem, H. Margolin, Merall. Trans. A, 17 (1986), pp. 1986-2209 |
[24] |
J. Gurland Mater. Sci. Eng., 40 (1979), pp. 59-71
DOI URL |
[25] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190
DOI URL |
[26] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys. Compd., 814 (2020), 152297
DOI URL |
[27] |
L. Lilensten, Y. Danard, R. Poulain, R. Guillou, J.M. Joubert, L. Perrière, P. Vermaut, D. Thiaudière, F. Prima, Materialia, 12 (2020), 100700
DOI URL |
[28] |
H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, Phys. Rev. B, 70 (2004), 174113
DOI URL |
[29] |
T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science, 300 (2003), p. 464
DOI URL |
[30] |
J. Lin, S. Ozan, Y. Li, D. Ping, X. Tong, G. Li, C. Wen, Sci. Rep., 6 (2016), p. 37901
DOI URL |
[31] |
J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, JOM, 67 (2015), pp. 1281-1303
DOI URL |
[32] |
Y. Abdelrhman, M.A.H. Gepreel, S. Kobayashi, S. Okano, T. Okamoto, Mater. Sci. Eng. C, 99 (2019), pp. 552-562
DOI URL |
[33] |
D. Qiu, M.X. Zhang, P.M. Kelly, T. Furuhara, Acta Mater., 67 (2014), pp. 373-382
DOI URL |
[34] |
T. Lee, Y.U. Heo, C.S. Lee, Scr. Mater., 69 (2013), pp. 785-788
DOI URL |
[35] |
P. Barriobero-Vila, V. Biancardi Oliveira, S. Schwarz, T. Buslaps, G. Requena, Acta Mater., 135 (2017), pp. 132-143
DOI URL |
[36] |
H.Y. Kim, L. Wei, S. Kobayashi, M. Tahara, S. Miyazaki, Acta Mater., 61 (2013), pp. 4874-4886
DOI URL |
[37] |
J.M. Oh, J.H. Kang, S. Lee, S.D. Kim, N. Kang, C.H. Park, Mater. Lett., 233 (2018), pp. 162-165
DOI URL |
[38] |
M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater., 59 (2011), pp. 6208-6218
DOI URL |
[39] |
Q. Liang, Y. Zheng, D. Wang, Y. Hao, R. Yang, Y. Wang, H.L. Fraser, Scr. Mater., 158 (2019), pp. 95-99
DOI URL |
[40] | M.R. Dal Bó, C.A.F. Salvador, M.G. Mello, D.D. Lima, G.A. Faria, A.J. Ramirez, R. Caram, Mater. Des., 160 (2018), pp. 1186-1195 |
[41] |
J.H. Dai, Y. Song, W. Li, R. Yang, L. Vitos, Phys. Rev. B, 89 (2014), 014103
DOI URL |
[42] |
Q.M. Hu, S.J. Li, Y.L. Hao, R. Yang, B. Johansson, L. Vitos, Appl. Phys. Lett., 93 (2008), 121902
DOI URL |
[43] |
W. Ye, X. Mi, X. Song, Rare Metals, 31 (2012), pp. 227-230
DOI URL |
[44] |
E. Bertrand, P. Castany, Y. Yang, E. Menou, T. Gloriant, Acta Mater., 105 (2016), pp. 94-103
DOI URL |
[45] |
L. Qi, X. Qiao, L. Huang, X. Huang, X. Zhao, Mater. Sci. Eng. A, 756 (2019), pp. 381-388
DOI URL |
[46] |
Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang, J. Mater. Sci. Technol., 34 (2018), pp. 2507-2514
DOI URL |
[47] |
M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater., 84 (2015), pp. 124-135
DOI URL |
[48] |
L. Ren, W. Xiao, H. Chang, Y. Zhao, C. Ma, L. Zhou, Mater. Sci. Eng. A, 711 (2018), pp. 553-561
DOI URL |
[49] |
J. Xu, W. Zeng, D. Zhou, W. Chen, S. He, X. Zhang, J. Mater. Sci. Technol., 59 (2020), pp. 1-13
DOI URL |
[50] |
F.H. da Costa, C.A.F. Salvador, M.G. de Mello, R. Caram, Mater. Sci. Eng. A, 677 (2016), pp. 222-229
DOI URL |
[51] |
X.Q. Ma, H.Z. Niu, Z.T. Yu, S. Yu, C. Wang, Rare Metal, 37 (2018), pp. 846-851
DOI URL |
[52] |
Y. Cao, W. Zhang, B. Liu, M. Song, Y. Liu, Mater. Res. Lett., 8 (2020), pp. 254-260
DOI URL |
[53] |
Y. Chong, G. Deng, J. Yi, A. Shibata, N. Tsuji, J. Alloys. Compd., 811 (2019), 152040
DOI URL |
[54] |
J. Gao, J. Nutter, X. Liu, D. Guan, Y. Huang, D. Dye, W.M. Rainforth, Sci. Rep., 8 (2018), p. 7512
DOI URL |
[1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[2] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[3] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[4] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[5] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[6] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[7] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[8] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[9] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[10] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[11] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[12] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[13] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[14] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[15] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||