J. Mater. Sci. Technol. ›› 2021, Vol. 76: 129-149.DOI: 10.1016/j.jmst.2020.11.005
• Invited Review • Previous Articles Next Articles
Alejandra Rodriguez-Contrerasa,b, Miquel Punseta,b,c, José A. Calerod, Francisco JavierGile, Elisa Rupereza,b, José María Maneroa,b,*()
Received:
2020-05-12
Revised:
2020-07-03
Accepted:
2020-07-13
Published:
2021-06-20
Online:
2020-11-06
Contact:
José María Manero
About author:
*Biomaterials, Biomechanics and Tissue Engineering group (BBT), Department of Materials Science and Engineering, Universitat Politècnica deCatalunya (UPC), Av. Edurad Maristany 16, 08019, Barcelona, Spain.E-mail address: jose.maria.manero@upc.edu (J.M. Manero).Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review[J]. J. Mater. Sci. Technol., 2021, 76: 129-149.
Method | Sub-Method | Advantages | Disadvantages |
---|---|---|---|
Conventional Methods | Conventional Powder Metallurgy with Space Holder (PM-SH) | - High level of porosity (60 %-80 %) distributed homogeneously with suitable mechanical strength - Easy control of the porosity parameters such as pore morphology, percentage, and pore size distribution - Easy to industrialize, less expensive as well as less time-consuming than rapid prototyping techniques (SLM, FDM, or 3D-printing) - Random and irregulars pore distribution with different sizes may perform significantly better in bone regeneration applications - Reduced amounts of waste | - The randomness of the process and the type of the SH particle could produce a variation in wall thickness and interconnect size that can deteriorate its mechanical performance - Contamination by residual SH particles - Importance of controlling the main parameters such as mixing, compact pressure, and sintering temperature - -Geometry limitation of manufactured products |
Metal injection molding (MIM) | - Capable of producing both porous and dense small parts - Design flexibility | - Reduced part size - High initial cost - A quantity of material is removed during processing - 15 %-20 % linear shrinkage during processing | |
Metal additive manufacturing (AM) | Selective laser melting (SLM) | - Time-to-market adapted to ever shorter product lifecycles - There is practically no restriction on the geometry to be produced. - Reduced capital tied up in stocks, as parts can be printed quickly and easily | - High laser power and good beam quality: expensive lasers - Melt pool instabilities and higher residual stresses |
Electron beam melting (EBM) | - Moderate energy costs - Faster with fewer supports than laser sintering (magnetically driven) - Scalable: Multiple parts can be produced simultaneously as the beam can separate powder in several places at once | - Lower accuracy than laser sintering or melting - Exclusively used in metals - Limited build volume: EBM machines are typically limited to a build volume that measures less than 400 mm in any direction | |
Laser metal deposition (LMD) | - Reduced material wastage - Combination of different materials - High precision shape components - Rapid prototyping, and in situ repair - Fabrication of functionally graded materials | - Few applications and selected - Unpredicted properties: The parts have complex thermal histories - High cost equipment - Residual stresses are commonly present as well as anisotropy in the mechanical properties - Limited design freedom | |
3D-printing | - Short production runs and prototypes - Suitable for customizability and adaptation - Interconnected pore architecture and complex shapes - Reduced waste | - Poor surface finish - Limitation in the use of materials - No recommended for large parts - Not suitable for long production runs |
Table 1 Comparison of the different methodologies for processing porous Ti implants.
Method | Sub-Method | Advantages | Disadvantages |
---|---|---|---|
Conventional Methods | Conventional Powder Metallurgy with Space Holder (PM-SH) | - High level of porosity (60 %-80 %) distributed homogeneously with suitable mechanical strength - Easy control of the porosity parameters such as pore morphology, percentage, and pore size distribution - Easy to industrialize, less expensive as well as less time-consuming than rapid prototyping techniques (SLM, FDM, or 3D-printing) - Random and irregulars pore distribution with different sizes may perform significantly better in bone regeneration applications - Reduced amounts of waste | - The randomness of the process and the type of the SH particle could produce a variation in wall thickness and interconnect size that can deteriorate its mechanical performance - Contamination by residual SH particles - Importance of controlling the main parameters such as mixing, compact pressure, and sintering temperature - -Geometry limitation of manufactured products |
Metal injection molding (MIM) | - Capable of producing both porous and dense small parts - Design flexibility | - Reduced part size - High initial cost - A quantity of material is removed during processing - 15 %-20 % linear shrinkage during processing | |
Metal additive manufacturing (AM) | Selective laser melting (SLM) | - Time-to-market adapted to ever shorter product lifecycles - There is practically no restriction on the geometry to be produced. - Reduced capital tied up in stocks, as parts can be printed quickly and easily | - High laser power and good beam quality: expensive lasers - Melt pool instabilities and higher residual stresses |
Electron beam melting (EBM) | - Moderate energy costs - Faster with fewer supports than laser sintering (magnetically driven) - Scalable: Multiple parts can be produced simultaneously as the beam can separate powder in several places at once | - Lower accuracy than laser sintering or melting - Exclusively used in metals - Limited build volume: EBM machines are typically limited to a build volume that measures less than 400 mm in any direction | |
Laser metal deposition (LMD) | - Reduced material wastage - Combination of different materials - High precision shape components - Rapid prototyping, and in situ repair - Fabrication of functionally graded materials | - Few applications and selected - Unpredicted properties: The parts have complex thermal histories - High cost equipment - Residual stresses are commonly present as well as anisotropy in the mechanical properties - Limited design freedom | |
3D-printing | - Short production runs and prototypes - Suitable for customizability and adaptation - Interconnected pore architecture and complex shapes - Reduced waste | - Poor surface finish - Limitation in the use of materials - No recommended for large parts - Not suitable for long production runs |
Company | Implant/Designation | Process | Features | Reference |
---|---|---|---|---|
ZIMMER BIOMET | Interbody cages in spine surgery / TrellOs-TC Porous | 3D Printing | Porosity: 70 % Pore sizes: 300, 500, and 700 μm Surface roughness: 7 μm | [ |
Human Cancellous bone / OsseoTi Porous Metal Technology | 3D Printing | Porosity: 70 % Pore sizes: 475μm | [ | |
Wedge / OsseoTi | NR | Porosity: 70 % | [ | |
WRIGHT MEDICAL TECHNOLOGY, INC. | Wedges Designed Specifically for Foot and Ankle / Biofoam Cancellous Ti | NR | Porosity: up to 70 %, and fully interconnected | [ |
Anatomic Cotton and Evans Wedge / BIOFOAM | NR | Porosity: up to 70 % | [ | |
PRAXIS TECHNOLOGY | Orthopaedic implants (Acetabular cups, tibial trays, femoral knees, patellae, shoulder glenoids) and Spine cages (cages, foot and ankle implants, fusion wedges) | NR | NR | [ |
NUVASIVE, INC. | Spine implant for TLIF procedures / Modulus TLIF-A ( | 3D Printing - Additive Manufacturing | Endplate texture and porosity similar to the bone | [ |
AMBER IMPLANTS | Vertebral augmentation System | 3D Printing - Additive Manufacturing | NR | [ |
STRYKER | Intervertebral implants / Cascadia TL 3D Interbody System ( | 3D Printing | Porosity: 70 % Surface roughness: 3 -5 μm | [ |
Acetabular Wedge Augments/ Restoration | Tritanium Porous Technology | Average Porosity: 63 % Coefficient of friction: 1.014 | [ | |
NEUROSTRUCTURES | Cervical Interbody Cage System / Cavetto Phusion Metal | NR | NR | [ |
Intervertebral implants / Cortina Ti | NR | NR | ||
Intervertebral implants / Cantonale Ti TLIF | NR | NR | ||
Cervical system / Cavetto-SA Ti | NR | NR | ||
Intervertebral implants / Arco-SA Ti | NR | NR | ||
DEPUY SYNTHES | Intervertebral implants / Conduit Interbody Platform | 3D Printing | Porosity: 80 % Pore size: 700 μm | [ |
Porous coating for acetabular cups / GRIPTION | Sintering | Porosity: 80 % Pore Size: 300 μm | [ | |
Porous vertebral implant / PLIVIOPORE | MIM | Porosity: up to 80 % | [ | |
CENTINEL SPINE, LLC | Interbody devices / FLX™ Platform | 3D Printing | NR | [ |
HD LIFESCIENCES | Interbody Fusion Devices | High-definition 3D Printing - Surface treatment for activation | Porosity: 70 % | [ |
SPINEART | Interbody implant / Juliet Ti | Additive Manufacturing | Porosity: 70 %-75 %Pore size: 600 -700 μm Interconnected | [ |
CHOICESPINE | Intervertebral implant for lumbar spine / Tiger Shark - BioBond | BioBond 3D Printed | NR | [ |
BIOMECH SPINE | Interbody system / Nest PLIF & TLIF Lumbar Cage | 3D Printing | Porosity: ≈70 %-80 %Pore size range: 700-900 μm | [ |
ALTIMED | Cementless femoral stem ( | Special patented technology - Surface treatment with antibiotic deposition | microroughness 15-40 mmpore size: 250 -350 μm | [ |
Acetabular cup, press-fit cup | ||||
TSUNAMI MEDICAL | Interbody Cage / Stromboli Lateral Fusion Cage | NR | NR | [ |
KYOCERA MEDICAL TECHNOLOGIES, INC. | Spinal cage system / Tesera SA Stand-Alone ALIF Cage System | Additive Manufacturing - EBM | Pore size: 504 μm Porosity gradient by layers: 57-72-91 % Surface roughness: micro scale | [ |
Acetabular System / Tesera Trabecular Technology | Additive Manufacturing - EBM | Pore size: 504 μm Porosity gradient by layers: 57-72-91 % Surface roughness: micro scale | [ | |
OSSEUS | Interbody fusion devices / Aries™ | Additive Manufacturing - EBM | Porosity: 80 % | [ |
SMITH & NEPHEW | Acetabular coating / R3 ( | NR | NR | [ |
SPINEVISION | Interbody system / Hexanium TLIF cage | 3D Printing | NR | [ |
CORELINK | Interbody system / F3D Straight | 3D Printed laser-printed | Porosity: 60 % | [ |
HT MEDICAL | Cervical cages / TiWave Cervical, NeoFuse Ti3D Cervical, TiWave Oblique PLIF/TLIF | 3D printing | Macro and micro porosity | [ |
ARTHREX, INC | Anatomic Cotton and Evans Wedge/ BioSync | NR | NR | [ |
INNOVA LIFE SCIENCE | Multilayered porous surface dental implant / Endopore ( | SPS | NR | [ |
AMES GROUP | Anatomic Cotton and Evans Wedge / Osteosinter ( | SH-PM | Porosity: 65 % | [ |
Table 2 Commercialized implants made of porous Ti structures, their manufacturer, commercial designation, and contact links. (NR: no reported).
Company | Implant/Designation | Process | Features | Reference |
---|---|---|---|---|
ZIMMER BIOMET | Interbody cages in spine surgery / TrellOs-TC Porous | 3D Printing | Porosity: 70 % Pore sizes: 300, 500, and 700 μm Surface roughness: 7 μm | [ |
Human Cancellous bone / OsseoTi Porous Metal Technology | 3D Printing | Porosity: 70 % Pore sizes: 475μm | [ | |
Wedge / OsseoTi | NR | Porosity: 70 % | [ | |
WRIGHT MEDICAL TECHNOLOGY, INC. | Wedges Designed Specifically for Foot and Ankle / Biofoam Cancellous Ti | NR | Porosity: up to 70 %, and fully interconnected | [ |
Anatomic Cotton and Evans Wedge / BIOFOAM | NR | Porosity: up to 70 % | [ | |
PRAXIS TECHNOLOGY | Orthopaedic implants (Acetabular cups, tibial trays, femoral knees, patellae, shoulder glenoids) and Spine cages (cages, foot and ankle implants, fusion wedges) | NR | NR | [ |
NUVASIVE, INC. | Spine implant for TLIF procedures / Modulus TLIF-A ( | 3D Printing - Additive Manufacturing | Endplate texture and porosity similar to the bone | [ |
AMBER IMPLANTS | Vertebral augmentation System | 3D Printing - Additive Manufacturing | NR | [ |
STRYKER | Intervertebral implants / Cascadia TL 3D Interbody System ( | 3D Printing | Porosity: 70 % Surface roughness: 3 -5 μm | [ |
Acetabular Wedge Augments/ Restoration | Tritanium Porous Technology | Average Porosity: 63 % Coefficient of friction: 1.014 | [ | |
NEUROSTRUCTURES | Cervical Interbody Cage System / Cavetto Phusion Metal | NR | NR | [ |
Intervertebral implants / Cortina Ti | NR | NR | ||
Intervertebral implants / Cantonale Ti TLIF | NR | NR | ||
Cervical system / Cavetto-SA Ti | NR | NR | ||
Intervertebral implants / Arco-SA Ti | NR | NR | ||
DEPUY SYNTHES | Intervertebral implants / Conduit Interbody Platform | 3D Printing | Porosity: 80 % Pore size: 700 μm | [ |
Porous coating for acetabular cups / GRIPTION | Sintering | Porosity: 80 % Pore Size: 300 μm | [ | |
Porous vertebral implant / PLIVIOPORE | MIM | Porosity: up to 80 % | [ | |
CENTINEL SPINE, LLC | Interbody devices / FLX™ Platform | 3D Printing | NR | [ |
HD LIFESCIENCES | Interbody Fusion Devices | High-definition 3D Printing - Surface treatment for activation | Porosity: 70 % | [ |
SPINEART | Interbody implant / Juliet Ti | Additive Manufacturing | Porosity: 70 %-75 %Pore size: 600 -700 μm Interconnected | [ |
CHOICESPINE | Intervertebral implant for lumbar spine / Tiger Shark - BioBond | BioBond 3D Printed | NR | [ |
BIOMECH SPINE | Interbody system / Nest PLIF & TLIF Lumbar Cage | 3D Printing | Porosity: ≈70 %-80 %Pore size range: 700-900 μm | [ |
ALTIMED | Cementless femoral stem ( | Special patented technology - Surface treatment with antibiotic deposition | microroughness 15-40 mmpore size: 250 -350 μm | [ |
Acetabular cup, press-fit cup | ||||
TSUNAMI MEDICAL | Interbody Cage / Stromboli Lateral Fusion Cage | NR | NR | [ |
KYOCERA MEDICAL TECHNOLOGIES, INC. | Spinal cage system / Tesera SA Stand-Alone ALIF Cage System | Additive Manufacturing - EBM | Pore size: 504 μm Porosity gradient by layers: 57-72-91 % Surface roughness: micro scale | [ |
Acetabular System / Tesera Trabecular Technology | Additive Manufacturing - EBM | Pore size: 504 μm Porosity gradient by layers: 57-72-91 % Surface roughness: micro scale | [ | |
OSSEUS | Interbody fusion devices / Aries™ | Additive Manufacturing - EBM | Porosity: 80 % | [ |
SMITH & NEPHEW | Acetabular coating / R3 ( | NR | NR | [ |
SPINEVISION | Interbody system / Hexanium TLIF cage | 3D Printing | NR | [ |
CORELINK | Interbody system / F3D Straight | 3D Printed laser-printed | Porosity: 60 % | [ |
HT MEDICAL | Cervical cages / TiWave Cervical, NeoFuse Ti3D Cervical, TiWave Oblique PLIF/TLIF | 3D printing | Macro and micro porosity | [ |
ARTHREX, INC | Anatomic Cotton and Evans Wedge/ BioSync | NR | NR | [ |
INNOVA LIFE SCIENCE | Multilayered porous surface dental implant / Endopore ( | SPS | NR | [ |
AMES GROUP | Anatomic Cotton and Evans Wedge / Osteosinter ( | SH-PM | Porosity: 65 % | [ |
Benefits | SH Elimination | Results | References | |
---|---|---|---|---|
Polymer | ||||
Polymethyl-methacrylate (PMMA) | Control of the macro -pore morphology | Heated up to 250-450 °C for 5 h in a vacuum | Porosities: 50 % Macropore size: 170-221 μm | [ |
Paraformaldehyde (polyoxymethylene) | Completely decompose at low temperatures and no reactions with Ti powder | Removed by catalytic process | Porosity: 75 % | [ |
Inorganic Salts | ||||
Magnesium (Mg) | NR | Evaporation while sintering (hot pressed Mg/Ti preform at a temperature below the melting point of the Mg) Leaching with hydrochloric acid solution | The elastic moduli: 44.2 GPa, 24.7 GPa and 15.4 GPa Porosity: 30 %, 40 % and 50 % | [ |
Ammonium bicarbonate | Easily and completely removable due to its moderate decomposition temperature, ensuring a low uptake of impurities such as oxygen, nitrogen and carbon | Decomposition: 60 °C Removal: 150-175 °C | Porosities: around 80 % | [ |
Sodium Chloride (Nacl) | Faster route and best structural integrity of samples | Dissolution process with distilled water temperature between 50 and 60 ◦C to remove Leaching with water | Porosity: 40 %-70 % | [ |
Calcium Chloride | NR | Vaporized in a 150 °C | Porosity: 71 %-88 % | [ |
Organic Particles | ||||
Carbamide | Limitations compacting mixtures with large volume fractions (x > 50 %) and at high pressures (P > 300 MPa) | Decomposition in vacuum (if not biuret appears increasing the impurity contents): 133 °C Removal: >600 °C Leaching with water or NaOH | Porosities: up to 75 %. When combined with ammonium hydrogen carbonate: 80 % | [ |
Starch | Environmentally friendly, easily removable by burning, chemically stable, and is not soluble in Ti | Tapioca starch removal: 450 °C Leaching with water | Porosity: 64 %-79 %, Size of open cellular pores: 100-300 μm Young's moduli: 1.6-3.7 GPa | [ |
Saccharose Crystals (Table Sugar) | Easily removed | Leaching with water | 1:1 Ti/sugar ratio Porosities of about 72 % with pore diameter of about 0.8-1.0 mm | [ |
Inert Gas | ||||
Argon | Minimize contamination | Dissolution in hot deionized water | Wide range of pore sizes: from a few μm up to 2 mm | [ |
Metallic Spheres | ||||
Iron and steel | H2 and O2 contamination by the SH is avoided Various geometries are available The SH surface can be smooth or irregular Hydrostatic pressure can be applied during densification | Removed after densification by electrochemical dissolution | Pore size in the order of mm | [ |
Table 3 List of SH material used in some studies for the production of Ti foams and porous scaffolds. (NR: No reported).
Benefits | SH Elimination | Results | References | |
---|---|---|---|---|
Polymer | ||||
Polymethyl-methacrylate (PMMA) | Control of the macro -pore morphology | Heated up to 250-450 °C for 5 h in a vacuum | Porosities: 50 % Macropore size: 170-221 μm | [ |
Paraformaldehyde (polyoxymethylene) | Completely decompose at low temperatures and no reactions with Ti powder | Removed by catalytic process | Porosity: 75 % | [ |
Inorganic Salts | ||||
Magnesium (Mg) | NR | Evaporation while sintering (hot pressed Mg/Ti preform at a temperature below the melting point of the Mg) Leaching with hydrochloric acid solution | The elastic moduli: 44.2 GPa, 24.7 GPa and 15.4 GPa Porosity: 30 %, 40 % and 50 % | [ |
Ammonium bicarbonate | Easily and completely removable due to its moderate decomposition temperature, ensuring a low uptake of impurities such as oxygen, nitrogen and carbon | Decomposition: 60 °C Removal: 150-175 °C | Porosities: around 80 % | [ |
Sodium Chloride (Nacl) | Faster route and best structural integrity of samples | Dissolution process with distilled water temperature between 50 and 60 ◦C to remove Leaching with water | Porosity: 40 %-70 % | [ |
Calcium Chloride | NR | Vaporized in a 150 °C | Porosity: 71 %-88 % | [ |
Organic Particles | ||||
Carbamide | Limitations compacting mixtures with large volume fractions (x > 50 %) and at high pressures (P > 300 MPa) | Decomposition in vacuum (if not biuret appears increasing the impurity contents): 133 °C Removal: >600 °C Leaching with water or NaOH | Porosities: up to 75 %. When combined with ammonium hydrogen carbonate: 80 % | [ |
Starch | Environmentally friendly, easily removable by burning, chemically stable, and is not soluble in Ti | Tapioca starch removal: 450 °C Leaching with water | Porosity: 64 %-79 %, Size of open cellular pores: 100-300 μm Young's moduli: 1.6-3.7 GPa | [ |
Saccharose Crystals (Table Sugar) | Easily removed | Leaching with water | 1:1 Ti/sugar ratio Porosities of about 72 % with pore diameter of about 0.8-1.0 mm | [ |
Inert Gas | ||||
Argon | Minimize contamination | Dissolution in hot deionized water | Wide range of pore sizes: from a few μm up to 2 mm | [ |
Metallic Spheres | ||||
Iron and steel | H2 and O2 contamination by the SH is avoided Various geometries are available The SH surface can be smooth or irregular Hydrostatic pressure can be applied during densification | Removed after densification by electrochemical dissolution | Pore size in the order of mm | [ |
Fig. 4. Scheme of the number of published studies (%) using different sintering temperatures. All considered studies used a controlled atmosphere (under vacuum or argon) and did not apply pressure during sintering. Only publications in indexed scientific journals and no reviews were considered. Lee14 [222], Zha08 [223], Las19 [35], Maj20 [224], Rya08 [225], Mon14 [226], Nai13 [227], Zha08 [223], Xia121 [153], Dut19 [228], Top17 [229], Jha13 [230], Che09 [143], Zhe19 [122], Tru17 [231], Deh18 [44], Sha11 [232], Ari17 [233], Ari16 [234], Rei [235], Las19 [35], Cet19 [236], Tor17 [237], Tun11 [67], Kho16 [168], Tor16 [238], Jak13 [139], Pav15 [239], Tor14 [240], Deh18 [44], Ahm10, Shb16 [241], Mu?15 [242], Jia15 [243], Wen09 [123], Wan17 [244], Dom19 [245], Civ19 [246], Tru20 [247], Dau15 [125], Ozb16 [248], Rya08 [225], Chen18 [140], Chen17 [116], Deh18 [44], Kim13 [249], Shb19 [250], Man10 [251], Ort18 [196], Cap16 [173], Cap14 [195].
Fig. 5. Photography (left) and optical microscope images (right) for observation of the pore distribution. Effect of porosity on Young’s modulus and elastic limit for a spacer particle size of 300-600 μm. Images and data provided by AMES [104].
Fig. 6. (a) X-rays before and after an osteotomy. Radiographs demonstrate reduction of deformity and maintenance of correction over 36 months of follow-up. Study carried out by Matthews et al [190]. (b) Osteosinter samples photography’s and the porous characterization via micro computerized tomography (μCT). Images and data provided by AMES [104].
Fig. 7. (a) One of the initial intervertebral implants made of porous Ti from 1997 [194] and the anterior-posterior radiographs of the lumbar spine. (b) Photography of the porous Ti lumbar cage implant produced by PM-SH process and the electron microscopy micrographs of porous Ti surfaces. When the implant was treated with Kokubo's thermos chemical treatment, the typical feather-like textures were produced. The surfaces formed hydroxyapatite crystals when the implant was soaked in SBF for 12 days. The in vivo studies revealed high capacity of osseointegration when the material was thermochemically treated, reaching bone index contact values between 52 % and 64 % [173].
Fig. 8. (a) Image and 3D reconstruction of a porous Ti cylinder produced by PM-SH method and electron microscopy micrographs of the surfaces treated with Kokubo’s treatment and incubated in simulated body fluid for 12 days. Hydroxyapatite crystals precipitated on the Ti surface can be observed. (b) Histology of the porous Ti at 14 days after implantation: (b-a) without bioactive treatment, (b-b) with thermochemical treatment, (b-c) functionalized with peptide. Images provided by AMES [104].
[1] |
S. Amin, S.J. Achenbach, E.J. Atkinson, S. Khosla, L.J. Melton, J. Bone Miner. Res., 29 (2014), pp. 581-589
DOI URL |
[2] | J.S. Walsh, Surgey, 33 (2015), pp. 1-6 |
[3] |
K. Alvarez, H. Nakajima, Materials (Basel), 2 (2009), pp. 790-832
DOI URL |
[4] | L. Bayliss, D. Mahoney, A. Monk, Surgery, 30 (2012), pp. 47-53 |
[5] |
N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, J. Mater. Sci. Mater. Med., 19 (2008), pp. 1581-1586
DOI URL |
[6] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci., 54 (2009), pp. 397-425
DOI URL |
[7] |
K.J. Bozic, A.F. Kamath, K. Ong, E. Lau, S. Kurtz, V. Chan, T.P. Vail, H. Rubash, D.J. Berry, Clin. Orthop. Relat. Res., 473 (2015), pp. 2131-2138
DOI URL |
[8] |
M. Sundfeldt, L.V. Carlsson, C.B. Johansson, P. Thomsen, C. Gretzer, Acta Orthop., 77 (2006), pp. 177-197
PMID |
[9] |
J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Biomaterials, 84 (2016), pp. 301-314
DOI URL |
[10] |
K. Choi, J.L. Kuhn, M.J. Ciarelli, S.A. Goldstein, J. Biomech., 23 (1990), pp. 1103-1113
PMID |
[11] |
J.Y. Rho, R.B. Ashman, C.H. Turner, J. Biomech., 26 (1993), pp. 111-119
PMID |
[12] | R.F. Heary, N. Parvathreddy, S. Sampath, N. Agarwal, J. Spine Surg. (Hong Kong), 3 (2017), pp. 163-167 |
[13] |
S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, P. Qin, Y.H. Li, X.H. Zhang, L.C. Zhang, Mater. Sci. Eng. C, 110 (2020), 110728
DOI URL |
[14] |
Q. Li, C. Cheng, J. Li, K. Zhang, K. Zhou, M. Nakai, M. Niinomi, K. Yamanaka, D. Wei, A. Chiba, T. Nakano, J. Mater. Eng. Perform., 29 (2020), pp. 2871-2878
DOI URL |
[15] |
S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, J. Alloys. Compd., 792 (2019), pp. 684-693
DOI URL |
[16] |
Y. Zhang, D. Kent, G. Wang, D. St John, M. Dargusch, Mater. Des., 85 (2015), pp. 256-265
DOI URL |
[17] | C.E. Misch, Implant Dent., 8 (1999), pp. 176-386 |
[18] |
S. Bencharit, W.C. Byrd, S. Altarawneh, B. Hosseini, A. Leong, G. Reside, T. Morelli, S. Offenbacher, Clin. Implant Dent. Relat. Res., 16 (2014), pp. 817-826
DOI PMID |
[19] |
M. Joshi, S. Advani, F. Miller, M. Santare, J. Biomech., 33 (2001), pp. 1655-1662
DOI URL |
[20] |
H. Xie, X.M. Yu, B.J. Wang, J.H. Yang, K.R. Qin, D.W. Zhao, Sci. Adv. Mater., 11 (2019), pp. 1443-1448
DOI URL |
[21] |
S. Arabnejad, B. Johnston, M. Tanzer, D. Pasini, J. Orthop. Res. Off. Publ. Orthop. Res. Soc., 35 (2017), pp. 1774-1783
DOI URL |
[22] |
S. Ghouse, N. Reznikov, O.R. Boughton, S. Babu, K.C.G. Ng, G. Blunn, J.P. Cobb, M.M. Stevens, J.R.T. Jeffers, Appl. Mater. Today, 15 (2019), pp. 377-388
DOI |
[23] |
S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, Mater. Des., 114 (2017), pp. 633-641
DOI URL |
[24] | M. Assad, P. Jarzem, M.A. Leroux, C. Coillard, A.V. Chernyshov, S. Charette, C.H. Rivard, J. Biomed. Mater. Res. Part B-Appl. Biomater., 64 (2003), pp. 107-120 |
[25] | L. Li, J. Shi, K. Zhang, L. Yang, F. Yu, L. Zhu, H. Liang, X. Wang, Q. Jiang, J. Orthop. Transl., 19 (2019), pp. 94-105 |
[26] | B. Dabrowski, W. Swieszkowski, D. Godlinski, K.J. Kurzydlowski, J. Biomed. Mater. Res. Part B-Appl. Biomater., 95 (2010), pp. 53-61 |
[27] |
V. Karageorgiou, D. Kaplan, Biomaterials, 26 (2005), pp. 5474-5491
PMID |
[28] |
S.F. Hulbert, S.J. Morrison, J.J. Klawitter, J. Biomed. Mater. Res., 6 (1972), pp. 347-374
DOI URL |
[29] |
L. Zardiackas, D. Parsell, L. Dillon, D. Mitchell, L.A. Nunnery, R. Poggie, J. Biomed. Mater. Res., 58 (2001), pp. 180-187
DOI URL |
[30] |
V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, Acta Biomater., 6 (2010), pp. 3349-3359
DOI URL |
[31] |
A. Laptev, O. Vyal, M. Bram, H.P. Buchkremer, D. Stöver, Powder Metall., 48 (2005), pp. 358-364
DOI URL |
[32] |
K. Zhang, Y. Fan, N. Dunne, X. Li, Regen. Biomater., 5 (2018), pp. 115-124
DOI PMID |
[33] |
M. Qian, W. Xu, M. Brandt, H.P. Tang, MRS Bull., 41 (2016), pp. 775-784
DOI URL |
[34] |
Y. Torres, J.J. Pavón, I. Nieto, J.A. Rodríguez, Metall. Mater. Trans. B, 42 (2011), pp. 891-900
DOI URL |
[35] |
S. Lascano, C.M. Arévalo Mora, I. Montealegre-Meléndez, S. Muñoz Moreno, J.A. Rodríguez-Ortiz, P. Trueba Muñoz, Y. Torres Hernández, Appl. Sci., 9 (2019), p. 982
DOI URL |
[36] |
D.C. Dunand, Adv. Eng. Mater., 6 (2004), pp. 369-376
DOI URL |
[37] |
M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur, Adv. Eng. Mater., 2 (2000), pp. 196-199
DOI URL |
[38] |
W. Niu, C. Bai, G. Qiu, Q. Wang, Mater. Sci. Eng. A, 506 (2009), pp. 148-151
DOI URL |
[39] | A.T. Sidambe, Materials (Basel, Switzerland), 7 (2014), pp. 8168-8188 |
[40] | I. Todd, A.T. Sidambe, I. Chang, Y. Zhao(Eds.), Advances in Powder Metallurgy, Woodhead Publishing (2013), pp. 109-146 |
[41] |
A.T. Sidambe, I.A. Figueroa, H.G.C. Hamilton, I. Todd, J. Mater. Process. Technol., 212 (2012), pp. 1591-1597
DOI URL |
[42] | T. Ebel, D.F. Heaney (Ed.), Handbook of Metal Injection Molding (second ed.), Woodhead Publishing(2019), pp. 431-460 |
[43] |
M.F.F.A. Hamidi, W.S.W. Harun, M. Samykano, S.A.C. Ghani, Z. Ghazalli, F. Ahmad, A.B. Sulong, Mater. Sci. Eng. C, 78 (2017), pp. 1263-1276
DOI URL |
[44] | A. Dehghan-Manshadi, Y. Chen, Z. Shi, M. Bermingham, D. StJohn, M. Dargusch, M. Qian, Materials (Basel, Switzerland), 11 (2018), p. 1573 |
[45] |
N. Tuncer, M. Bram, A. Laptev, T. Beck, A. Moser, H.P. Buchkremer, J. Mater. Process. Technol., 214 (2014), pp. 1352-1360
DOI URL |
[46] |
M. Shbeh, Z.J. Wally, M. Elbadawi, M. Mosalagae, H. Al-Alak, G.C. Reilly, R. Goodall, J. Mech. Behav. Biomed. Mater., 96 (2019), pp. 193-203
DOI URL |
[47] | B. Dutta, F.H. Froes, M. Qian, F.H. Froes(Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, Boston (2015), pp. 447-468 |
[48] | F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Biamino, D. Ugues, D. Manfredi, J. Appl. Biomater. Funct. Mater., 16 (2017), pp. 57-67 |
[49] |
L.C. Zhang, H. Attar, Adv. Eng. Mater., 18 (2016), pp. 463-475
DOI URL |
[50] |
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater., 113 (2016), pp. 56-67
DOI URL |
[51] |
Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.C. Zhang, Acta Mater., 126 (2017), pp. 58-66
DOI URL |
[52] |
L.C. Zhang, Y. Liu, S. Li, Y. Hao, Adv. Eng. Mater., 20 (2018), p. 1700842
DOI URL |
[53] |
S. Zhao, S.J. Li, S.G. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang, R.D.K. Misra, L.E. Murr, Acta Mater., 150 (2018), pp. 1-15
DOI URL |
[54] | N. Hafeez, J. Liu, L. Wang, D. Wei, Y. Tang, W. Lu, L.C. Zhang, Addit. Manuf., 34 (2020), 101264 |
[55] |
T.J. Horn, O.L.A. Harrysson, Sci. Prog., 95 (2012), pp. 255-282
DOI URL |
[56] |
R.E. Saunders, J.E. Gough, B. Derby, Biomaterials, 29 (2008), pp. 193-203
PMID |
[57] |
X. Cui, T. Boland, D.D. D’Lima, M.K. Lotz, Recent Pat. Drug Deliv. Formul., 6 (2012), pp. 149-155
DOI URL |
[58] |
T. Xu, J. Jin, C. Gregory, J.J. Hickman, T. Boland, Biomaterials, 26 (2005), pp. 93-99
DOI URL |
[59] | Y. Fang, J.P. Frampton, S. Raghavan, R. Sabahi-Kaviani, G. Luker, C.X. Deng, S. Takayama Tissue, Eng. Part C-Methods, 18 (2012), pp. 647-657 |
[60] |
K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, A. Ovsianikov, Biofabrication, 8 (2016), p. 32002
DOI URL |
[61] |
S. Khalil, W. Sun, Mater. Sci. Eng. C, 27 (2007), pp. 469-478
DOI URL |
[62] |
I.T. Ozbolat, M. Hospodiuk, Biomaterials, 76 (2016), pp. 321-343
DOI URL |
[63] |
I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Biomaterials, 23 (2002), pp. 1169-1185
DOI URL |
[64] |
B. Guillotin, A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave, J. Amédée, F. Guillemot, Biomaterials, 31 (2010), pp. 7250-7256
DOI PMID |
[65] |
S.M. Peltola, F.P.W. Melchels, D.W. Grijpma, M. Kellomäki, Ann. Med., 40 (2008), pp. 268-280
DOI URL |
[66] |
Z. Esen, Ş. Bor, Scr. Mater., 56 (2007), pp. 341-344
DOI URL |
[67] |
N. Tuncer, G. Arslan, E. Maire, L. Salvo, Mater. Sci. Eng. A, 530 (2011), pp. 633-642
DOI URL |
[68] |
A. Boccaccio, A.E. Uva, M. Fiorentino, G. Mori, G. Monno, PLoS One, 11 (2016), e0146935
DOI URL |
[69] |
A. Barba, A. Diez-Escudero, Y. Maazouz, K. Rappe, M. Espanol, E.B. Montufar, M. Bonany, J.M. Sadowska, J. Guillem-Marti, C. Öhman-Mägi, C. Persson, M.C. Manzanares, J. Franch, M.P. Ginebra, ACS Appl. Mater. Interfaces, 9 (2017), pp. 41722-41736
DOI URL |
[70] |
K.C. McGilvray, J. Easley, H.B. Seim, D. Regan, S.H. Berven, W.K. Hsu, T.E. Mroz, C.M. Puttlitz, Spine J., 18 (2018), pp. 1250-1260
DOI PMID |
[71] | Zimmer, 2019 Https://Www.Zimmerbiomet.Com/Medical-Professionals/Spine/Product/Trelloss-Tc-Porous-Ti-Interbody-System.Html |
[72] | Zimmer, 2016 Https://Www.Zimmerbiomet.Com/Medical-Professionals/Foot-and-Ankle/Product/Osseoti-Porous-Metal.Html |
[73] | G. Gupta, Biomet Orthopedics (2014) |
[74] | Z. Biomet, 2020 Https://Www.Zimmerbiomet.Com/Medical-Professionals/Foot-and-Ankle/Product/Osseoti-Wedge.Html |
[75] | I. Wright Medical Technology, 2013 Http://Www.Wrightemedia.Com/ProductFiles/Files/PDFs/009157_EN_LR_LE.Pdf |
[76] | I. Wright Medical Technology, 2016 http://www.wright.Com/Footandankleproducts/Biofoam |
[77] | P. Technology, 2020 Https://Praxisti.Com/Technologies/Porous-Titanium/ |
[78] | NuVasive, 2019 Https://Www.Nuvasive.Com/Surgical-Solutions/Advanced-Materials-Science/Modulus-Titanium-Technology/ |
[79] | A. Implants, 2018 Https://Amberimplants.Com/Ourwork/Vertebral-Augmentation-System/ |
[80] | SPINEMarketGroup, 2020 Http://Www.Thespinemarketgroup.Com/Category/3d-Ifc/ |
[81] | Stryker, 2020 Https://Www.Stryker.Com/Us/En/Spine/Products/Cascadia-Lateral.Html |
[82] | STRYKER, 2011 Https://Www.Strykermeded.Com/Medical-Devices/Hips-Knees/Hips/Augments/# |
[83] | NeuroStructures (2020) Https://Neurostructures.Com/?S=Search |
[84] | D. Synthes, 2019 Https://Www.Jnjmedicaldevices.Com/Sites/Default/Files/User_uploaded_assets/Pdf_assets/2019-05/Conduit%20Interbody-%20EIT%20Sales%20Sheet.Pdf |
[85] | D. Synthes, 2017 Http://Synthes.vo.Llnwd.Net/O16/LLNWMB8/INT%20Mobile/Synthes%20International/Product%20Support%20Material/Legacy_DePuy_PDFs/DSEM-JRC-0317-0783_LR.Pdf |
[86] | L.L.C. Centinel Spine, 2020 Https://Www.Centinelspine.Com/Corp_flx.Php |
[87] | H.D. Lifesciences, 2020 Https://Www.Hdlifesciences.Com/#section-Id-1500060122495 |
[88] | Spineart, 2020 Https://Www.Spineart.Com/Us/?S=JULIET |
[89] | ChoiceSpine, 2020 Https://Choicespine.Com/Products/Lateral-System/Tiger-Shark-l/#videos_section |
[90] | B. Spine, 2020 Http://Www.Biomech-Spine.Com/En-Ww/Products/Products.Php?SID=54 |
[91] | T. Medical, 2019 Https://Www.Tsunamimedical.Com/Wp-Content/Uploads/2020/01/STROMBOLI-Catalogo-2019-Rev1.Pdf |
[92] | ALTIMED, 2018 Http://Www.Altimed.by/Uploads/Userfiles/Files/Altimed_catalogue_2012_english.Pdf |
[93] | KYOCERA, 2020 Https://Kyocera-Medical.Com/2011/09/Tesera-Sa-Stand-Alone-Alif-Cage-System/ |
[94] | I. KYOCERA Medical Technologies, 2019 Https://Kyocera-Medical.Com/Wp-Content/Uploads/2019/02/4001-006-KYOCERA-Tesera-Technical-Bro-RevB-2.Pdf |
[95] | KYOCERA, Https://Kyocera-Medical.Com/2014/10/Tesera-Trabecular-Technology/(n.d.). |
[96] | OSSEUS, 2020 Https://Www.Osseus.Com/Aries-Ibfd/#1530364285171-Ba5915ac-2e5a |
[97] | S. & NEPHEW, 2019 Https://Www.Smith-Nephew.Com/Espana/Productos/Reconstruccion/Reconstruccion-de-Cadera/Cadera-Primaria/R3/ |
[98] | S.& NEPHEW (2013) Https://Www.Smith-Nephew.Com/Global/Assets/Pdf/Products/Surgical/R3_product_brochure_00373.Pdf |
[99] | SPINEVISION, 2019 Https://Spinevision.Net/Our-Solutions/Hexanium-Tlif/ |
[100] | CORELINK, 2020 Https://Corelinksurgical.Com/Product/F3d-Straight/ |
[101] | H.T. Medical, 2019 Https://Www.Htmedicalusa.Com |
[102] | I.N.C. ARTHREX, 2020 Https://Www.Arthrex.Com/Foot-Ankle/Biosync-Anatomic-Reconstruction-Wedge/Products |
[103] | I.L. SCIENCE, 2020 |
[104] | Private Communication AMES Med., 2020 |
[105] |
L. Wang, J.J. Chen, C.Z. Cai, L. Shi, S. Liu, L. Ren, Y.J. Wang, J. Mater. Chem. B, 3 (2015), pp. 30-33
DOI PMID |
[106] | M. Godoy-Gallardo, M.C. Manzanares-Céspedes, P. Sevilla, J. Nart, N. Manzanares, J.M. Manero, F.J. Gil, S.K. Boyd, D. Rodríguez, Mater. Sci. Eng. C, 69 (2016), pp. 538-545 |
[107] | E. Velasco-Ortega, A. Flichy-Fernández, M. Punset, A. Jiménez-Guerra, J.M. Manero, J. Gil, Materials (Basel, Switzerland), 12 (2019), p. 3728 |
[108] |
A.A. Zadpoor, J. Mater. Chem. B, 7 (2019), pp. 4088-4117
DOI PMID |
[109] |
F. Azari, N. Arjmand, A. Shirazi-Adl, T. Rahimi-Moghaddam, J. Biomech., 70 (2018), pp. 157-165
DOI PMID |
[110] |
D. Cazzola, T.P. Holsgrove, E. Preatoni, H.S. Gill, G. Trewartha, PLoS One, 12 (2017), e0169329
DOI URL |
[111] |
E. Rupérez, J.M. Manero, K. Riccardi, Y. Li, C. Aparicio, F.J. Gil, Mater. Des., 83 (2015), pp. 112-119
DOI URL |
[112] | B. Arifvianto, J. Zhou, Materials (Basel, Switzerland), 7 (2014), pp. 3588-3622 |
[113] |
C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Scr. Mater., 45 (2001), pp. 1147-1153
DOI URL |
[114] |
D. Tian, Y. Pang, L. Yu, L. Sun, Int. J. Miner. Metall. Mater., 23 (2016), pp. 793-798
DOI URL |
[115] | R.L. Padilla, R. Lucci, C. Oldani, Matéria (Rio Janeiro), 23 (2018) |
[116] | Y. Chen, D. Kent, M. Bermingham, A. Dehghan-Manshadi, G. Wang, C. Wen, M. Dargusch, Bioact. Mater., 2 (2017), pp. 248-252 |
[117] |
M. Güden, E. Çelik, A. Hızal, M. Altındiş, S. Çetiner, J. Biomed. Mater. Res. Part B-Appl. Biomater., 85B (2008), pp. 547-555
DOI URL |
[118] |
Y. Torres, J.J. Pavón, J.A. Rodríguez, J. Mater. Process. Technol., 212 (2012), pp. 1061-1069
DOI URL |
[119] |
B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, C.S. Lee, Mater. Des., 57 (2014), pp. 712-718
DOI URL |
[120] |
X.B. Chen, Y.C. Li, P.D. Hodgson, C. Wen, Acta Biomater., 5 (2009), pp. 2290-2302
DOI URL |
[121] |
D.J. Lee, J.M. Jung, M.I. Latypov, B. Lee, J. Jeong, S.H. Oh, C.S. Lee, H.S. Kim, Comput. Mater. Sci., 100 (2015), pp. 2-7
DOI URL |
[122] |
J. Zheng, L. Chen, D. Chen, C. Shao, M. Yi, B. Zhang, Trans. Nonferrous Met. Soc. China, 29 (2019), pp. 2534-2545
DOI URL |
[123] |
W.J. Niu, C.G. Bai, G.B. Qiu, Q. Wang, Mater. Sci. Eng. A, 506 (2009), p. 148
DOI URL |
[124] |
X. Wang, Y. Li, J. Xiong, P.D. Hodgson, C. Wen, Acta Biomater., 5 (2009), pp. 3616-3624
DOI URL |
[125] |
N.F. Daudt, M. Bram, A.P. Cysne Barbosa, C. Alves, Mater. Lett., 141 (2015), pp. 194-197
DOI URL |
[126] | S. Dalal, M. Holt, J. Denton, Shoulder Elb., 4 (2012), pp. 30-32 |
[127] | W.S. Khan, M. Agarwal, A.A. Malik, A.G. Cox, J. Denton, E.M. Holt, J. Bone Joint Surg. Br., 90B (2008), pp. 502-505 |
[128] |
S. Xiong, Y. Tang, H.S. Ng, X. Zhao, Z. Jiang, Z. Chen, K.W. Ng, S.C.J. Loo, Toxicology, 304 (2013), pp. 132-140
DOI URL |
[129] |
M.E. Dizlek, M. Guden, U. Turkan, A. Tasdemirci, J. Mater. Sci., 44 (2009), pp. 1512-1519
DOI URL |
[130] |
B. Li, Z. Li, X. Lu Trans. Nonferrous, Met. Soc. China, 25 (2015), pp. 2965-2973
DOI URL |
[131] |
I.H. Oh, N. Nomura, S. Hanada, Mater. Trans., 43 (2002), pp. 443-446
DOI URL |
[132] |
Z. Esen, Ş. Bor, Mater. Sci. Eng. A, 528 (2011), pp. 3200-3209
DOI URL |
[133] |
Y. Chen, J.E. Frith, A. Dehghan-Manshadi, H. Attar, D. Kent, N.D.M. Soro, M.J. Bermingham, M.S. Dargusch, J. Mech. Behav. Biomed. Mater., 75 (2017), pp. 169-174
DOI URL |
[134] |
A. Laptev, M. Bram, H. Buchkremer, D. Stöver, Powder Metall., 47 (2004), pp. 85-92
DOI URL |
[135] |
B. Xie, Y.Z. Fan, T.Z. Mu, B. Deng, Mater. Sci. Eng. A, 708 (2017), pp. 419-423
DOI URL |
[136] | D.R. Lide, CRC Handbook of Chemistry and Physics (74th edn), CRC Press Inc., Boca Raton (1994), pp. 4-37 |
[137] |
B. Arifvianto, M.A. Leeflang, J. Zhou, Powder Technol., 284 (2015), pp. 112-121
DOI URL |
[138] |
A. Mansourighasri, N. Muhamad, A.B. Sulong, J. Mater. Process. Technol., 212 (2012), pp. 83-89
DOI URL |
[139] |
J. Jakubowicz, G. Adamek, M. Dewidar, J. Porous Mater., 20 (2013), pp. 1137-1141
DOI URL |
[140] |
Y. Chen, J.E. Frith, A. Dehghan-Manshadi, D. Kent, M. Bermingham, M. Dargusch, J. Biomed. Mater. Res. Part B-Appl. Biomater., 106 (2018), pp. 2796-2806
DOI URL |
[141] |
N. Tuncer, G. Arslan, J. Mater. Sci., 44 (2009), pp. 1477-1484
DOI URL |
[142] |
P.J. Kwok, S.M. Oppenheimer, D.C. Dunand, Adv. Eng. Mater., 10 (2008), pp. 820-825
DOI URL |
[143] |
L. Chen, T. Li, Y. Li, H. He, Y. Hu, Trans. Nonferrous Met. Soc. China, 19 (2009), pp. 1174-1179
DOI URL |
[144] |
J. Banhart, Prog. Mater. Sci., 46 (2001), pp. 559-632
DOI URL |
[145] |
G.L. Hao, F.S. Han, W.D. Li, J. Porous Mater., 16 (2009), pp. 251-256
DOI URL |
[146] |
N. Özkan, B.J. Briscoe, J. Eur. Ceram. Soc., 17 (1997), pp. 697-711
DOI URL |
[147] |
C.F. Li, Z.G. Zhu, T. Liu, Powder Metall., 48 (2005), pp. 237-240
DOI URL |
[148] | I.N. Popescu, R. Vidu, Sci. Bull. Valahia Univ.Mater. Mech., 16 (2018), pp. 7-12 |
[149] | R.W. Heckel, Trans. Metall. Soc. AIME, 221 (1961), p. 671 |
[150] |
K. Kawakita, K.H. Lüdde, Powder Technol., 4 (1971), pp. 61-68
DOI URL |
[151] |
C. Zou, Y. Liu, X. Yang, H. Wang, Z. Wei, Trans. Nonferrous Met. Soc. China, 22 (2012), pp. s485-s490
DOI URL |
[152] |
I.H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scr. Mater., 49 (2003), pp. 1197-1202
DOI URL |
[153] |
C. Xiang, Y. Zhang, Z. Li, H. Zhang, Y. Huang, H. Tang, Proc. Eng., 27 (2012), pp. 768-774
DOI URL |
[154] | , Y. Oshida, Bioscience and Bioengineering of Titanium Materials (2nd edn), Elsevier, Gt. Britain (2007) |
[155] |
D.S. Arensburger, V.S. Pugin, I.M. Fedorchenko, Sov. Powder Metall. Met. Ceram., 7 (1968), pp. 362-367
DOI URL |
[156] | M. Qian, Int. J. Powder Metall. (2010) |
[157] |
L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, J. Mech. Behav. Biomed. Mater., 14 (2012), pp. 29-38
DOI PMID |
[158] |
Y.F. Yang, S.D. Luo, C.J. Bettles, G.B. Schaffer, M. Qian, Mater. Sci. Eng. A, 528 (2011), pp. 7381-7387
DOI URL |
[159] |
H.C. Hsu, S.C. Wu, S.K. Hsu, M.S. Tsai, T.Y. Chang, W.F. Ho, Mater. Des., 47 (2013), pp. 21-26
DOI URL |
[160] | N. Abbasi, S. Hamlet, R.M. Love, N.T. Nguyen, J. Sci. Adv. Mater. Devices, 5 (2020), pp. 1-9 |
[161] |
S. Oh, N. Oh, M. Appleford, J.L. Ong, Am. J. Biochem. Biotechnol., 2 (2006), pp. 49-56
DOI URL |
[162] |
M.M. Dewidar, J.K. Lim, J. Alloys. Compd., 454 (2008), pp. 442-446
DOI URL |
[163] |
F. Bai, Z. Wang, J. Lu, J. Liu, G. Chen, R. Lv, J. Wang, K. Lin, J. Zhang, X. Huang, Tissue Eng. Part A, 16 (2010), pp. 3791-3803
DOI URL |
[164] | J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, B. Thierry, J. Mater. Sci. Mater. Med., 10 (1999), pp. 20-111 |
[165] |
I. Gligor, O. Soritau, M. Todea, C. Berce, A. Vulpoi, T. Marcu, V. Cernea, S. Simon, C. Popa, Part. Sci. Technol., 31 (2013), pp. 357-365
DOI URL |
[166] |
D.S. Li, Y.P. Zhang, X. Ma, X.P. Zhang, J. Alloys. Compd., 474 (2009), pp. L1-L5
DOI URL |
[167] |
B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, Z. Chen, Mater. Sci. Eng. A, 730 (2018), pp. 345-354
DOI URL |
[168] |
M. Khodaei, M. Meratian, O. Savabi, M. Razavi, Mater. Lett., 171 (2016), pp. 308-311
DOI URL |
[169] |
H. Chen, C. Wang, X. Zhu, K. Zhang, Y. Fan, X. Zhang, Mater. Sci. Eng. C, 43 (2014), pp. 182-188
DOI URL |
[170] | F. Matassi, A. Botti, L. Sirleo, C. Carulli, M. Innocenti, Clin. Cases Miner. Bone Metab., 10 (2013), pp. 111-115 |
[171] |
G. Ryan, A. Pandit, D.P. Apatsidis, Biomaterials, 27 (2006), pp. 2651-2670
DOI URL |
[172] |
D.J. Tucker, Tech. Foot Ankle Surg., 9 (2010), pp. 205-212
DOI URL |
[173] |
C. Caparrós, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J.A. Calero, C. Aparicio, M. Fernández-Fairén, R. Perez, F.J. Gil, J. Mater. Sci. Mater. Med., 27 (2016), p. 151
DOI URL |
[174] |
X. Weng, H. Yang, J. Xu, X. Li, Q. Liao, J. Wang, Exp. Ther. Med., 12 (2016), pp. 1323-1330
DOI URL |
[175] |
S. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol., 30 (2012), pp. 546-554
DOI URL |
[176] |
C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials, 31 (2010), pp. 461-466
DOI PMID |
[177] | L.M.R. de Vasconcellos, D. de O. Leite, F.O. Nascimento, L.G.O. de Vasconcellos, M.L. de A. Graça, Y.R. Carvalho, C.A.A. Cairo, Med. Oral Patol. Oral Cir. Bucal, 15 (2010), pp. e407-12 |
[178] |
Y. Sugawara, H. Kamioka, T. Honjo, K. Tezuka, T. Takano-Yamamoto, Bone, 36 (2005), pp. 877-883
PMID |
[179] |
G. Iviglia, S. Kargozar, F. Baino, J. Funct. Biomater., 10 (2019), pp. 1-36
DOI URL |
[180] |
D.M.L. Cooper, J.R. Matyas, M.A. Katzenberg, B. Hallgrimsson, Calcif. Tissue Int., 74 (2004), pp. 437-447
DOI URL |
[181] | F.S. Kaplan, W.C. Hayes, T.M. Keaveny, A. Boskey, T.A. Einhorn, J.P. Iannotti, Orthop. Basic Sci. (1994), pp 127-185 |
[182] |
T.M. Keaveny, E.F. Morgan, G.L. Niebur, O.C. Yeh, Annu. Rev. Biomed. Eng., 3 (2001), pp. 307-333
PMID |
[183] | M. Bram, H. Schiefer, D. Bogdanski, M. Köller, H.P. Buchkremer, D. Stöver, Met. Powder Rep., 61 (2006), pp. 26-31 |
[184] |
J.F. Despois, A. Mortensen, Acta Mater., 53 (2005), pp. 1381-1388
DOI URL |
[185] |
F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care, 15 (2007), pp. 3-17
DOI URL |
[186] |
S.S. Kohles, J.B. Roberts, M.L. Upton, C.G. Wilson, L.J. Bonassar, A.L. Schlichting, J. Biomech., 34 (2001), pp. 1197-1202
PMID |
[187] | M. Predoi-Racila, M.C. Stroe, J.M. Crolet, Comput. Methods Biomech. Biomed. Eng., 13 (2010), pp. 81-89 |
[188] |
A.C. Jones, C.H. Arns, D.W. Hutmacher, B.K. Milthorpe, A.P. Sheppard, M.A. Knackstedt, Biomaterials, 30 (2009), pp. 1440-1451
DOI URL |
[189] |
W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Acta Biomater., 3 (2007), pp. 1007-1018
DOI URL |
[190] |
M. Matthews, E.A. Cook, J. Cook, L. Johnson, T. Karthas, B. Collier, D. Hansen, E. Manning, B. McKenna, P. Basile, J. Foot Ankle Surg., 57 (2018), pp. 924-930
DOI PMID |
[191] |
C.E. Gross, J. Huh, J. Gray, C. Demetracopoulos, J.A. Nunley, Foot Ankle Int., 36 (2015), pp. 953-960
DOI URL |
[192] |
G.W. Bagby, Orthopedics, 11 (1988), pp. 931-934
PMID |
[193] |
J.W. Brantigan, A.D. Steffee, M.L. Lewis, L.M. Quinn, J.M. Persenaire, Spine, 25 (2000), pp. 1437-1446
PMID |
[194] |
C.D. Ray, Spine, 22 (1997), pp. 667-679
PMID |
[195] | C. Caparros, J. Guillem-Martí, M. Molmeneu-Trias, M. Punset-Fuste, J.A. Calero, J. Gil, J. Mech, Behav. Biomed. Mater., 39 (2014), pp. 79-86 |
[196] |
M. Ortiz-Hernandez, K.S. Rappe, M. Molmeneu, C. Mas-Moruno, J. Guillem-Marti, M. Punset, C. Caparros, J. Calero, J. Franch, M. Fernandez-Fairen, J. Gil, Int. J. Mol. Sci., 19 (2018), p. 2574
DOI URL |
[197] |
A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D. McKee, J. Biomed, Mater. Res., 40 (1998), p. 324
DOI URL |
[198] | P.T. de Oliveira, S.F. Zalzal, M.M. Beloti, A.L. Rosa, A. Nanci, J. Biomed. Mater. Res. Part A, 80 (2007), pp. 554-564 |
[199] |
L. Salou, A. Hoornaert, G. Louarn, P. Layrolle, Acta Biomater., 11 (2015), pp. 494-502
DOI URL |
[200] |
C. Rungsiyakull, Q. Li, G. Sun, W. Li, M.V. Swain, Biomaterials, 31 (2010), pp. 7196-7204
DOI PMID |
[201] |
S. Das, K. Dholam, S. Gurav, K. Bendale, A. Ingle, B. Mohanty, P. Chaudhari, J.R. Bellare, Sci. Rep., 9 (2019), p. 17638
DOI URL |
[202] |
A. Rodríguez-Contreras, Y. García, J.M. Manero, E. Rupérez, Eur. Polym. J., 90 (2017), pp. 66-78
DOI URL |
[203] |
A. Kulkarni Aranya, S. Pushalkar, M. Zhao, R.Z. LeGeros, Y. Zhang, D. Saxena, J. Biomed. Mater. Res. A., 105 (2017), pp. 2218-2227
DOI PMID |
[204] |
A.T. Sverzut, G.E. Crippa, M. Morra, P.T. de Oliveira, M.M. Beloti, A.L. Rosa, Biomed. Mater., 7 (2012), p. 35007
DOI URL |
[205] |
A. Rodríguez-Contreras, M.S. Marqués-Calvo, F.J. Gil, J.M. Manero, J. Mater. Sci. Mater. Med., 27 (2016), p. 124
DOI PMID |
[206] | Y.J. Cho, S.J. Heo, J.Y. Koak, S.K. Kim, S.J. Lee, J.H. Lee, Int. J. Oral Maxillofac. Implants, 26 (2011), pp. 1225-1232 |
[207] | V.M. Roriz, A.L. Rosa, O. Peitl, E.D. Zanotto, H. Panzeri, P.T. De Oliveira, Clin.Oral Implants Res., 21 (2010), pp. 148-155 |
[208] |
C. Herranz-Diez, C. Mas-Moruno, S. Neubauer, H. Kessler, F.J. Gil, M. Pegueroles, J.M. Manero, J. Guillem-Marti, ACS Appl. Mater. Interfaces, 8 (2016), pp. 2517-2525
DOI URL |
[209] |
R. Lutz, S. Srour, J. Nonhoff, T. Weisel, C.J. Damien, K.A. Schlegel, Clin. Oral Implants Res., 21 (2010), pp. 726-734
DOI PMID |
[210] |
H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res., 32 (1996), pp. 409-417
DOI URL |
[211] |
H.M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, T. Nakamura, J. Biomed. Mater. Res., 52 (2000), pp. 553-557
DOI URL |
[212] | G. Arealis, V.S. Nikolaou, A. Lacon, N. Ashwood, M. Hamlet, ISRN Orthop., 2014 (2014), 367490 |
[213] |
K. Klaue, Orthopade, 39 (2010), pp. 139-148
DOI PMID |
[214] |
P.J. Høl, A. Mølster, N.R. Gjerdet, Injury, 39 (2008), pp. 161-169
DOI URL |
[215] |
R. Kang, P.J. Stern, J. Bone Joint Surg. Am., 84 (2002), pp. 2266-2269
DOI URL |
[216] |
Y.K. Kim, H.H. Yeo, S.C. Lim, J. Oral Maxillofac. Surg., 55 (1997), pp. 322-326
DOI URL |
[217] | R. Zieliński, M. Kozakiewicz, J. Świniarski, Materials (Basel, Switzerland), 12 (2019), p. 1110 |
[218] |
T. Kanno, S. Sukegawa, Y. Furuki, Y. Nariai, J. Sekine, Jpn. Dent. Sci. Rev., 54 (2018), pp. 127-138
DOI URL |
[219] |
S. Pina, J.M.F. Ferreira, J. Healthcare Eng., 3 (2012), pp. 243-260
DOI URL |
[220] |
B. Wang, K. Zhang, C. Zhou, M. Ren, Y. Gu, T. Li, RSC Adv., 9 (2019), pp. 12836-12845
DOI |
[221] | P. Mukherjee, A. Rani, P. Saravanan Polymeric Materials for 3D Bioprinting, N. Ahmad, P. Gopinath, R. Dutta (Eds.), 3D Printing Technology in Nanomedicine, Elsevier (2019), pp. 63-81 |
[222] |
C.H. Lee, Y.W. Cheng, G.S. Huang, Nanoscale Res. Lett., 9 (2014), pp. 1-11
DOI URL |
[223] | Y. Zhao, L.E. Monaghan, PowderMet 2008 (2008), pp. 9340-9348 |
[224] |
D. Dutta Majumdar, V. Kumar, A. Roychowdhury, D.P. Mondal, M. Ghosh, S.K. Nandi, Materialia, 9 (2020), 100623
DOI URL |
[225] |
G.E. Ryan, A.S. Pandit, D.P. Apatsidis, Biomaterials, 29 (2008), pp. 3625-3635
DOI URL |
[226] |
D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, S.B. Arya, Mater. Des., 63 (2014), pp. 89-99
DOI URL |
[227] | Y. Naito, J. Bae, Y. Tomotake, K. Hamada, K. Asaoka, T. Ichikawa, J. Biomed. Mater. Res. Part B Appl. Biomater., 101 (2013), pp. 1090-1094 |
[228] |
D.D. Majumdar, M. Ghosh, D.P. Mondal, A. Roychoudhury, Procedia Manuf., 35 (2019), pp. 833-839
DOI |
[229] |
F. Toptan, A.C. Alves, A.M.P. Pinto, P. Ponthiaux, J. Mech. Behav., Biomed. Mater., 69 (2017), pp. 144-152
DOI PMID |
[230] |
N. Jha, D.P. Mondal, J. Dutta Majumdar, A. Badkul, A.K. Jha, A.K. Khare, Mater. Des., 47 (2013), pp. 810-819
DOI URL |
[231] | P. Trueba, J.R. Bascón Suárez, J.A. Rodriguez-Ortiz, Y. Torres, J.J. Pavon, E. Alonso, D.C. Dunand, Conference: VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia (2017), p. 17 |
[232] |
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, A.K. Gupta, Mater. Lett., 65 (2011), pp. 3199-3201
DOI URL |
[233] |
B. Arifvianto, M.A. Leeflang, J. Zhou, J. Mech. Behav., Biomed. Mater., 68 (2017), pp. 144-154
DOI PMID |
[234] |
B. Arifvianto, M.A. Leeflang, J. Zhou, Mater. Charact., 121 (2016), pp. 48-60
DOI URL |
[235] |
L.M.R. de Vasconcellos, M.V. de Oliveira, M.L. de A. Graça, L.G.O. de Vasconcellos, Y.R. Carvalho, C.A.A. Cairo, Mater. Res., 11 (2008), pp. 275-280
DOI URL |
[236] |
O. Cetinel, Z. Esen, B. Yildirim, Metals (Basel), 9 (2019), p. 340
DOI URL |
[237] |
C. Torres-Sanchez, F.R.A. Al Mushref, M. Norrito, K. Yendall, Y. Liu, P.P. Conway, Mater. Sci. Eng. C, 77 (2017), pp. 219-228
DOI URL |
[238] |
Y. Torres, P. Trueba, J.J. Pavón, E. Chicardi, P. Kamm, F. García-Moreno, J.A. Rodríguez-Ortiz, Mater. Des., 110 (2016), pp. 179-187
DOI URL |
[239] |
J.J. Pavón, P. Trueba, J.A. Rodríguez-Ortiz, Y. Torres, J. Mater. Sci., 50 (2015), pp. 6103-6112
DOI URL |
[240] |
Y. Torres, J. Pavón, P. Trueba, J. Cobos, J.A. Rodriguez-Ortiz, Procedia Mater. Sci., 4 (2014), pp. 115-119
DOI URL |
[241] |
M.M. Shbeh, R. Goodall, Met. Powder Rep., 71 (2016), pp. 450-455
DOI URL |
[242] |
S. Muñoz, J. Pavón, J.A. Rodríguez-Ortiz, A. Civantos, J.P. Allain, Y. Torres, Mater. Charact., 108 (2015), pp. 68-78
DOI URL |
[243] |
J. Jia, A.R. Siddiq, A.R. Kennedy, J. Mech. Behav. Biomed. Mater., 48 (2015), pp. 229-240
DOI URL |
[244] |
X. Wang, Z. Lu, L. Jia, J. Chen, J. Iron Steel Res. Int., 24 (2017), pp. 97-102
DOI URL |
[245] |
C. Domínguez-Trujillo, A.M. Beltrán, M.D. Garvi, A. Salazar-Moya, J. Lebrato, D.J. Hickey, J.A. Rodríguez-Ortiz, P.H. Kamm, C. Lebrato, F. García-Moreno, T.J. Webster, Y. Torres, Surf. Coat. Technol., 357 (2019), pp. 896-902
DOI URL |
[246] |
A. Civantos, C. Domínguez, R.J. Pino, G. Setti, J.J. Pavón, E. Martínez-Campos, F.J. Garcia Garcia, J.A. Rodríguez, J.P. Allain, Y. Torres, Surf. Coat. Technol., 368 (2019), pp. 162-174
DOI URL |
[247] |
P. Trueba, E. Chicardi, J.A. Rodríguez-Ortiz, Y. Torres, J. Manuf. Process., 50 (2020), pp. 142-153
DOI URL |
[248] |
S. Özbilen, D. Liebert, T. Beck, M. Bram, Mater. Sci. Eng. C, 60 (2016), pp. 446-457
DOI URL |
[249] |
S.W. Kim, H.D. Jung, M.H. Kang, H.E. Kim, Y.H. Koh, Y. Estrin, Mater. Sci. Eng. C, 33 (2013), pp. 2808-2815
DOI URL |
[250] | M.M. Shbeh, E. Oner, A.D.G. Al-Rubaye, R. Goodall, Adv. Mater. Sci. Eng. Int. J., 2019 (2019), pp. 1-14 |
[251] |
A. Manonukul, N. Muenya, F. Léaux, S. Amaranan, J. Mater. Process. Technol., 210 (2010), pp. 529-535
DOI URL |
[1] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[2] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
[3] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[4] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[5] | Y. Jiao, L.J. Huang, S.L. Wei, H.X. Peng, Q. An, S. Jiang, L. Geng. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance [J]. J. Mater. Sci. Technol., 2019, 35(8): 1532-1542. |
[6] | Jinhu Zhang, Jinmin Liu, Dongsheng Xu, Jie Wu, Lei Xu, Rui Yang. Characterization of the prior particle boundaries in a powder metallurgy Ti2AlNb alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2513-2525. |
[7] | Yao X., Zhang Z., Zheng Y.F., Kong C., Quadir M.Z., Liang J.M., Chen Y.H., Munroe P., Zhang D.L.. Effects of SiC Nanoparticle Content on the Microstructure and Tensile Mechanical Properties of Ultrafine Grained AA6063-SiCnp Nanocomposites Fabricated by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(9): 1023-1030. |
[8] | Hou Legan, Li Bingcheng, Wu Ruizhi, Cui Lin, Ji Peng, Long Ruiying, Zhang Jinghua, Li Xinlin, Dong Anping, Sun Baode. Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(9): 947-953. |
[9] | Kubásek Ji?í, Dvorsky Drahomír, ?avojsky Miroslav, Vojtěch Dalibor, Beronská Nad'a, Fousová Michaela. Superior Properties of Mg-4Y-3RE-Zr Alloy Prepared by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(7): 652-660. |
[10] | Chen Jie, Bao Chonggao, Chen Wenhui, Zhang Li, Liu Jinling. Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents [J]. J. Mater. Sci. Technol., 2017, 33(7): 668-674. |
[11] | Yang Donghui, Chen Jianqing, Chen Weiping, Wang Lei, Wang Hui, Jiang Jinghua, Ma Aibin. Fabrication of cellular Zn-Mg alloy foam by gas release reaction via powder metallurgical approach [J]. J. Mater. Sci. Technol., 2017, 33(10): 1141-1146. |
[12] | Sun Xianglong, Han Yuanfei, Cao Sanchen, Qiu Peikun, Lu Weijie. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites [J]. J. Mater. Sci. Technol., 2017, 33(10): 1165-1171. |
[13] | Wang Zhiguo,Li Chuanpeng,Wang Huiyuan,Zhu Xian,Wu Min,Li Jiehua,Jiang Qichuan. Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques [J]. J. Mater. Sci. Technol., 2016, 32(10): 1008-1012. |
[14] | Bin Li, Guojun Zhang, Feng Jiang, Shuai Ren, Gang Liu, Jun Sun. Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment [J]. J. Mater. Sci. Technol., 2015, 31(10): 995-1000. |
[15] | Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, T. Zuo. Mechanical Properties of a Low-thermal-expansion Aluminum/Silicon Composite Produced by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2014, 30(4): 417-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||