J. Mater. Sci. Technol. ›› 2021, Vol. 76: 111-121.DOI: 10.1016/j.jmst.2020.10.026
• Research Article • Previous Articles Next Articles
Yuriy G. Denisenkoa,b,c, Victor V. Atuchind,e,f,*(), Maxim S. Molokeevg,h,i, Naizheng Wangj, Xingxing Jiangj, Aleksandr S. Aleksandrovskyk,l, Alexander S. Krylovm, Aleksandr S. Oreshonkovh,j, Alexander E. Sedykhb,h, Svetlana S. Volkovaa, Zheshuai Linj,o, Oleg V. Andreeva,p, Klaus Müller-Buschbaumb,n
Received:
2020-06-26
Revised:
2020-08-03
Accepted:
2020-08-15
Published:
2021-06-20
Online:
2020-10-27
Contact:
Victor V. Atuchin
About author:
*Laboratory of Optical Materials and Structures, Insti-tute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russia.E-mail address: atuchin@isp.nsc.ru (V.V. Atuchin).Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra[J]. J. Mater. Sci. Technol., 2021, 76: 111-121.
T (K) | Space group | a (Å) | b (Å) | c (Å) | β (°) | V (Å3) | Z | 2θ-interval (°) | No. of reflections | No. of refined parameters | Rwp (%) | Rp (%) | Rexp (%) | χ2 | RB (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
303 | P21/m | 4.71751 (4) | 6.84940 (6) | 9.89528 (9) | 95.1466 (4) | 318.448 (5) | 2 | 10-144 | 686 | 61 | 3.29 | 2.51 | 2.06 | 1.59 | 1.55 |
503 | P21/m | 4.75129 (4) | 6.84223 (6) | 9.93141 (9) | 95.0258 (4) | 321.623 (5) | 2 | 10-144 | 693 | 61 | 3.51 | 2.62 | 2.17 | 1.62 | 1.56 |
703 | P21/m | 4.80158 (6) | 6.83505 (8) | 9.9648 (1) | 94.8957 (5) | 325.841 (7) | 2 | 10-144 | 700 | 61 | 3.76 | 2.61 | 2.17 | 1.74 | 2.05 |
Table 1 Main parameters of processing and refinement of the sample AgHo(SO4)2.
T (K) | Space group | a (Å) | b (Å) | c (Å) | β (°) | V (Å3) | Z | 2θ-interval (°) | No. of reflections | No. of refined parameters | Rwp (%) | Rp (%) | Rexp (%) | χ2 | RB (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
303 | P21/m | 4.71751 (4) | 6.84940 (6) | 9.89528 (9) | 95.1466 (4) | 318.448 (5) | 2 | 10-144 | 686 | 61 | 3.29 | 2.51 | 2.06 | 1.59 | 1.55 |
503 | P21/m | 4.75129 (4) | 6.84223 (6) | 9.93141 (9) | 95.0258 (4) | 321.623 (5) | 2 | 10-144 | 693 | 61 | 3.51 | 2.62 | 2.17 | 1.62 | 1.56 |
703 | P21/m | 4.80158 (6) | 6.83505 (8) | 9.9648 (1) | 94.8957 (5) | 325.841 (7) | 2 | 10-144 | 700 | 61 | 3.76 | 2.61 | 2.17 | 1.74 | 2.05 |
Fig. 4. Structure transformations appeared upon heating. The bonds, which increase on heating, are red and, contrary, the bonds, which decrease on heating, are blue. The bond angles, which increase, decrease and are unchanged under heating are marked by red, blue and green sectors, respectively. Blue short arrows indicate the O2― ion move.
Spectrum | Element content (wt.%) | Total | |||
---|---|---|---|---|---|
Ag | Ho | S | O | ||
Spectrum 1 | 23.22 | 35.49 | 13.78 | 27.51 | 100 |
Spectrum 2 | 23.19 | 35.49 | 13.80 | 27.52 | 100 |
Spectrum 3 | 23.20 | 35.50 | 13.78 | 27.52 | 100 |
Spectrum 4 | 23.19 | 35.46 | 13.80 | 27.55 | 100 |
Mean | 23.20 | 35.49 | 13.79 | 27.52 | 100 |
Theory | 23.20 | 35.48 | 13.79 | 27.53 | 100 |
Table 2 Element composition measurements by EDS.
Spectrum | Element content (wt.%) | Total | |||
---|---|---|---|---|---|
Ag | Ho | S | O | ||
Spectrum 1 | 23.22 | 35.49 | 13.78 | 27.51 | 100 |
Spectrum 2 | 23.19 | 35.49 | 13.80 | 27.52 | 100 |
Spectrum 3 | 23.20 | 35.50 | 13.78 | 27.52 | 100 |
Spectrum 4 | 23.19 | 35.46 | 13.80 | 27.55 | 100 |
Mean | 23.20 | 35.49 | 13.79 | 27.52 | 100 |
Theory | 23.20 | 35.48 | 13.79 | 27.53 | 100 |
Wavenumber (cm-1) [ | Td Point group | Cs Site symmetry | C2h Factor group symmetry |
---|---|---|---|
983 | A1 (ν1) | A’ | Ag+Bu |
450 | E (ν2) | A’+A’’ | Ag+Bu+Bg+Au |
1105 | F2 (ν3) | 2A’+A’’ | 2Ag+2Bu+Bg+Au |
611 | F2 (ν4) | 2A’+A’’ | 2Ag+2Bu+Bg+Au |
Table 3 Correlation diagram between Td point symmetry, Cs sites symmetry and C2h factor group symmetry for SO4 tetrahedra.
Wavenumber (cm-1) [ | Td Point group | Cs Site symmetry | C2h Factor group symmetry |
---|---|---|---|
983 | A1 (ν1) | A’ | Ag+Bu |
450 | E (ν2) | A’+A’’ | Ag+Bu+Bg+Au |
1105 | F2 (ν3) | 2A’+A’’ | 2Ag+2Bu+Bg+Au |
611 | F2 (ν4) | 2A’+A’’ | 2Ag+2Bu+Bg+Au |
Raman | Infrared | Assignment | |
---|---|---|---|
exp. (cm-1) | calc. (cm-1) | exp. (cm-1) | |
1162 | 1168 | 1269 | |
1131 | 1120 | 1161 | ν3 SO4 |
1089 | 1089 | 1111 | |
1061 | 1049 | ||
1012 | 1004 | 1016 | ν1 SO4 |
997 | 995 | ν1 SO4 | |
692 | 699 | 687 | |
662 | 674 | 663 | |
620 | 631 | 601 | ν4 SO4 |
606 | 605 | ||
603 | 576 | ||
594 | 589 | ||
515 | 539 | 532 | |
471 | 497 | 489 | ν2 SO4 |
411 | 386 | ||
406 | 372 | ||
352 | |||
252 | 299 | ||
232 | 226 | rot. SO4 | |
209 | |||
154 | |||
132 | |||
113 | |||
105 | |||
65 | |||
54 | |||
32 |
Table 4 Calculated (Raman) wavenumbers versus experimental Raman and IR data.
Raman | Infrared | Assignment | |
---|---|---|---|
exp. (cm-1) | calc. (cm-1) | exp. (cm-1) | |
1162 | 1168 | 1269 | |
1131 | 1120 | 1161 | ν3 SO4 |
1089 | 1089 | 1111 | |
1061 | 1049 | ||
1012 | 1004 | 1016 | ν1 SO4 |
997 | 995 | ν1 SO4 | |
692 | 699 | 687 | |
662 | 674 | 663 | |
620 | 631 | 601 | ν4 SO4 |
606 | 605 | ||
603 | 576 | ||
594 | 589 | ||
515 | 539 | 532 | |
471 | 497 | 489 | ν2 SO4 |
411 | 386 | ||
406 | 372 | ||
352 | |||
252 | 299 | ||
232 | 226 | rot. SO4 | |
209 | |||
154 | |||
132 | |||
113 | |||
105 | |||
65 | |||
54 | |||
32 |
Fig. 9. Visible wavelength range of high resolution luminescence spectra of AgHo(SO4)2 (red, excited at 457.9 nm) and of reference crystals Rb2KHoF6 (blue, excited at 355 nm) and HoAl3(BO3)4 (black, excited at 457.9 nm).
[1] |
D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Łukasz J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.H. Emwas, M. Eddaoudi, J. Am. Chem. Soc., 137 (2015), pp. 13308-13318
DOI URL |
[2] |
C. Artini, J. Eur. Ceram. Soc., 37 (2017), pp. 427-440
DOI URL |
[3] |
G. Akopov, M.T. Yeung, R.B. Kaner, Adv. Mater., 29 (2017), 1604506
DOI URL |
[4] |
S.S. Fedotov, N.A. Kabanova, A.A. Kabanov, V.A. Blatov, N.R. Khasanova, E.V. Antipov, Solid State Ion., 314 (2018), pp. 129-140
DOI URL |
[5] |
J. Perles, C. Fortes-Revilla, E. Guttérrez-Puebla, M. Iglesias, M.A. Monge, C. Ruiz-Valero, N. Snejko, Chem. Mater., 17 (2005), pp. 2701-2706
DOI URL |
[6] |
M. Kul, Y. Topkaya, I. Karakaya, Hydrometallurgy, 93 (2008), pp. 129-135
DOI URL |
[7] |
S.J. Mills, V. Petříček, A.R. Kampf, R. Herbst-Imer, M. Raudsepp, J. Solid State Chem., 184 (2011), pp. 2322-2328
DOI URL |
[8] |
N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, J. Coord. Chem., 68 (2015), pp. 1865-1877
DOI URL |
[9] |
O.V. Andreev, Yu.G. Denisenko, E.I. Sal’nikova, N.A. Khritokhin, K.S. Zyryanova, Russ. J. Inorg. Chem., 61 (2016), pp. 296-301
DOI URL |
[10] |
X.J. Wang, J.G. Li, M.S. Molokeev, Q. Zhu, X.D. Li, X.D. Sun, Chem. Eng. J., 302 (2016), pp. 577-586
DOI URL |
[11] |
S.A. Osseni, Y.G. Denisenko, J.K. Fatombi, E.I. Sal’nikova, O.V. Andreev, J. Nanostruct. Chem., 7 (2017), pp. 337-343
DOI URL |
[12] |
Y.G. Denisenko, V.V. Atuchin, M.S. Molokeev, A.S. Aleksandrovsky, A.S. Krylov, A.S. Oreshonkov, S.S. Volkova, O.V. Andreev, Inorg. Chem., 57 (2018), pp. 13279-13288
DOI PMID |
[13] |
Y.G. Denisenko, A.S. Aleksandrovsky, V.V. Atuchin, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, N.P. Shestakov, O.V. Andreev, J. Ind. Eng. Chem., 68 (2018), pp. 109-116
DOI URL |
[14] |
L. Zhang, F. Ma, Q.M. Guan, C. Wang, J. Alloys Compd., 802 (2019), pp. 173-180
DOI URL |
[15] |
Y.G. Denisenko, M.S. Molokeev, A.S. Krylov, A.S. Aleksandrovsky, A.S. Oreshonkov, V.V. Atuchin, N.O. Azarapin, P.E. Plyusnin, E.I. Sal’nikova, O.V. Andreev, J. Ind. Eng. Chem., 79 (2019), pp. 62-70
DOI |
[16] |
M.S. Wickleder, Chem. Rev., 102 (2002), pp. 2011-2087
PMID |
[17] |
L. Feng, J. Wang, G. Tang, L.F. Liang, H.B. Liang, Q. Su, J. Lumin., 124 (2007), pp. 187-194
DOI URL |
[18] |
D.A. Ikonnikov, A.V. Malakhovskii, A.L. Sukhachev, V.L. Temerov, A.S. Krylov, A.F. Bovina, A.S. Aleksandrovsky, Opt. Mater., 37 (2014), pp. 257-261
DOI URL |
[19] |
P. Li, A. Ruehl, U. Grosse-Wortmann, I. Hartl, Opt. Lett., 39 (2014), pp. 6859-6862
DOI URL |
[20] |
A.L. Sukhachev, A.V. Malakhovskii, A.S. Aleksandrovsky, I.A. Gudim, V.L. Temerov, Opt. Mater., 83 (2018), pp. 87-92
DOI URL |
[21] |
P. Kronenberg, O. Traxer, World J. Urol., 33 (2015), pp. 463-469
DOI PMID |
[22] |
C. Netsch, B. Becker, C. Tiburtius, C. Moritz, A.V. Becci, T.R.W. Herrmann, A.J. Gross, World J. Urol., 35 (2017), pp. 1913-1921
DOI URL |
[23] |
D.A. Wollin, A. Ackerman, C. Yang, T. Chen, Urology, 103 (2017), pp. 47-51
DOI URL |
[24] |
C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, Phys. Chem. Chem. Phys., 17 (2015), pp. 19278-19287
DOI URL |
[25] |
J. Zhang, Z.H. Hua, F. Zhang, Ceram. Int., 41 (2015), pp. 9910-9915
DOI URL |
[26] |
C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, Mater. Lett., 181 (2016), pp. 38-41
DOI URL |
[27] | D. Kasprowicz, P. Głuchowski, B.M. Maciejewska, M. Chrunik, A. Majchrowski New, J. Chem., 41 (2017), pp. 9847-9856 |
[28] |
C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, J. Alloys Compd., 695 (2017), pp. 737-746
DOI URL |
[29] | S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr., 220 (2005), pp. 567-570 |
[30] | W. Kohn, L.J. Sham, Phys. Rev., 140 (1965), pp. 1133-1138 |
[31] |
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys., 64 (1992), pp. 1045-1097
DOI URL |
[32] |
J.P. Perdew, K. Burke, Phys. Rev. Lett., 77 (1996), pp. 3865-3868
DOI URL |
[33] |
J.P. Perdew, Y. Wang, Phys. Rev. B, 45 (1992), pp. 13244-13249
DOI URL |
[34] |
D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett., 43 (1979), pp. 1494-1497
DOI URL |
[35] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976), pp. 5188-5192
DOI URL |
[36] |
M. Cococcioni, S. de Gironcoli, Phys. Rev. B, 71 (2005), 035105
DOI URL |
[37] | V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B, 44 (1991), pp. 943-954 |
[38] | A.X.S. Bruker, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data-User’s Manual, Bruker A.X.S., Karlsruhe, Germany (2008) |
[39] |
V. Favre-Nicolin, R. Cerny, Mater. Sci. Forum, 443-444 (2004), pp. 35-38
DOI URL |
[40] |
V. Favre-Nicolin, R. Černý, J. Appl. Crystallogr., 35 (2002), pp. 734-743
DOI URL |
[41] |
A.L. Spek, J. Appl. Crystallogr., 36 (2003), pp. 7-13
DOI URL |
[42] |
A. Trzesowska, R. Kruszynski, T.J. Bartczak, Acta Crystallogr. B, 60 (2004), pp. 174-178
PMID |
[43] |
I.D. Brown, D. Altermatt, Acta Crystallogr. B, 41 (1985), pp. 244-247
DOI URL |
[44] | A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc. Dalton Trans., 7 (1984), pp. 1349-1356 |
[45] |
V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Cryst. Growth Des., 14 (2014), pp. 3576-3586
DOI URL |
[46] |
M.J. Cliffe, A.L. Goodwin, J. Appl. Crystallogr., 45 (2012), pp. 1321-1329
DOI URL |
[47] |
R.A. Secco, E.A. Secco, Phys. Rev. B, 56 (1997), pp. 3099-3104
DOI URL |
[48] |
C.W.F.T. Pistorius, J. Chem. Phys., 46 (1967), pp. 2167-2171
DOI URL |
[49] |
S.R. Rao, C.B. Lingam, D. Rajesh, R.P. Vijayalakshmil, C.S. Sunandana, IOSR J. Appl. Phys., 4 (2013), pp. 39-43
DOI URL |
[50] |
H.B. Larsen, G. Thorkildsen, D.G. Nicholson, P. Pattison, Cryst. Res. Technol., 51 (2016), pp. 730-737
DOI URL |
[51] |
J.K. Johnstone, J. Electrochem. Soc., 112 (1965), pp. 25C-27C
DOI URL |
[52] |
D.M. Speros, R.L. Woodhouse, J. Phys. Chem., 67 (1963), pp. 2164-2168
DOI URL |
[53] | K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (6th ed.), Wiley, New York (2009) |
[54] |
A.S. Aleksandrovsky, A.S. Krylov, A.V. Malakhovskii, V.N. Voronov, J. Lumin., 132 (2012), pp. 690-692
DOI URL |
[55] |
P.Y. Long, H. Tong, X.S. Miao, Appl. Phys. Express, 5 (2012), 031201
DOI URL |
[1] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[2] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[3] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[4] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[5] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[6] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[7] | Swadipta Roy, C.V. Ramana. Effect of sintering temperature on the chemical bonding, electronic structure and electrical transport properties of β-Ga1.9Fe0.1O3 compounds [J]. J. Mater. Sci. Technol., 2021, 67(0): 135-144. |
[8] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[9] | Fang Guan, Jizhou Duan, Xiaofan Zhai, Nan Wang, Jie Zhang, Dongzhu Lu, Baorong Hou. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36(0): 55-64. |
[10] | Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion [J]. J. Mater. Sci. Technol., 2020, 36(0): 134-139. |
[11] | Junyuan Bai, Xueyong Pang, Xiangying Meng, Hongbo Xie, Hucheng Pan, Yuping Ren, Min Jiang, Gaowu Qin. Anomalous crystal structure of γ″ phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study [J]. J. Mater. Sci. Technol., 2020, 36(0): 167-175. |
[12] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[13] | Mi Gyeong Kim, Wan-Kuen Jo. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors [J]. J. Mater. Sci. Technol., 2020, 40(0): 168-175. |
[14] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[15] | Innocent O. Arukalam, C.N. Njoku, Lihui Yang, Baorong Hou, Ying Li. Inhibition of sulfate-reducing bacteria influenced corrosion on hydrophobic poly(dimethylsiloxane) coatings [J]. J. Mater. Sci. Technol., 2020, 52(0): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||