J. Mater. Sci. Technol. ›› 2021, Vol. 76: 104-110.DOI: 10.1016/j.jmst.2020.11.011
• Research article • Previous Articles Next Articles
Jun Liua, Yuanyuan Gonga,*(
), Fengqi Zhangb, Yurong Youa, Guizhou Xua, Xuefei Miaoa, Feng Xua,*(
)
Received:2020-06-16
Revised:2020-08-06
Accepted:2020-09-04
Published:2021-06-20
Online:2020-11-06
Contact:
Yuanyuan Gong,Feng Xu
About author:xufeng@njust.edu.cn (F. Xu).Jun Liu, Yuanyuan Gong, Fengqi Zhang, Yurong You, Guizhou Xu, Xuefei Miao, Feng Xu. Large, low-field and reversible magnetostrictive effect in MnCoSi-based metamagnet at room temperature[J]. J. Mater. Sci. Technol., 2021, 76: 104-110.
Fig. 1. (a) M-B curves for stoichiometric MnCoSi alloy. (b) Field-Temperature diagram. Blue lines: tricritical behavior in stoichiometric MnCoSi alloy. Red lines: tricritical behavior with reduced Ttri and Bcri. Bcri↑ and Bcri↓ represent the values of critical field in field-up and field-down processes, respectively. The magnetostriction curves at room temperature are also included as insets.
| Samples | a (Å) | b (Å) | c (Å) | V (Å3) | d (Å) | xMn/zMn | xCo/zCo | xSi/zSi | Rwp/Rp (%) |
|---|---|---|---|---|---|---|---|---|---|
| Ti3 | 5.8918(9) | 3.6924(5) | 6.8672(5) | 149.40(5) | 3.075 | 0.0150(2)/0.1785(5) | 0.1536(8)/0.5652(2) | 0.7703(8)/0.6199(7) | 5.37/3.69 |
| V3 | 5.8891(5) | 3.6909(1) | 6.8674(3) | 149.27(1) | 3.065 | 0.0164(4)/0.1776(4) | 0.1537(1)/0.5586(6) | 0.7729(7)/0.6178(8) | 5.79/3.97 |
| Al1 | 5.8793(1) | 3.6926(6) | 6.8651(8) | 149.04(4) | 3.070 | 0.0157(1)/0.1781(2) | 0.1549(1)/0.5571(2) | 0.7620(2)/0.6260(2) | 6.37/4.42 |
| Ga1 | 5.8851(2) | 3.6961(2) | 6.8714(2) | 149.47(1) | 3.077 | 0.0166(3)/0.1784(3) | 0.1632(1)/0.5638(7) | 0.7623(8)/0.6259(1) | 6.38/4.29 |
| P2 | 5.8858(1) | 3.6906(1) | 6.8646(2) | 149.11(1) | 3.072 | 0.0167(9)/0.1783(4) | 0.1578(6)/0.5602(8) | 0.7594(6)/0.6277(1) | 5.30/3.75 |
| MnCoSi | 5.8817(3) | 3.6948(7) | 6.8700(4) | 149.30(4) | 3.087 | 0.0140(3)/0.1796(2) | 0.1553(6)/0.5604(1) | 0.7426(6)/0.6231(1) | 6.07/4.15 |
| Co1.7 | 5.8614(8) | 3.6985(2) | 6.8736(7) | 149.01(4) | 3.118 | 0.0230(1)/0.1815(3) | 0.1573(3)/0.5564(7) | 0.7643(1)/0.6268(9) | 4.8/3.57 |
| Fe2 | 5.8718(7) | 3.6983(4) | 6.8775(9) | 149.35(5) | 3.121 | 0.0187(8)/0.1820(4) | 0.1596(6)/0.5635(6) | 0.7688(3)/0.6261(9) | 5.32/3.87 |
| Cu2 | 5.8458(2) | 3.6811(3) | 6.8477(4) | 147.36(2) | 3.100 | 0.0207(1)/0.1810(6) | 0.1619(1)/0.5637(1) | 0.7354(2)/0.6231(3) | 5.70/3.82 |
| In2 | 5.8634(2) | 3.6917(4) | 6.8623(3) | 148.54(3) | 3.099 | 0.0173(8)/1.8072(1) | 0.1589(1)/0.5670(3) | 0.7660(3)/0.6264(9) | 4.28/3.36 |
| Sb2 | 5.8423(1) | 3.6863(2) | 6.8495(4) | 147.51(2) | 3.132 | 0.0290(7)/0.1832(5) | 0.1586(4)/0.5530(2) | 0.7245(5)/0.6286(1) | 4.79/3.31 |
Table 1 Lattice parameters a, b and c, unit-cell volume V, nearest Mn-Mn distance d and atomic occupancy sites for studied MnCoSi-based samples. The space group is Pnma and Wyckoff position is 4c (x, 1/4, z).
| Samples | a (Å) | b (Å) | c (Å) | V (Å3) | d (Å) | xMn/zMn | xCo/zCo | xSi/zSi | Rwp/Rp (%) |
|---|---|---|---|---|---|---|---|---|---|
| Ti3 | 5.8918(9) | 3.6924(5) | 6.8672(5) | 149.40(5) | 3.075 | 0.0150(2)/0.1785(5) | 0.1536(8)/0.5652(2) | 0.7703(8)/0.6199(7) | 5.37/3.69 |
| V3 | 5.8891(5) | 3.6909(1) | 6.8674(3) | 149.27(1) | 3.065 | 0.0164(4)/0.1776(4) | 0.1537(1)/0.5586(6) | 0.7729(7)/0.6178(8) | 5.79/3.97 |
| Al1 | 5.8793(1) | 3.6926(6) | 6.8651(8) | 149.04(4) | 3.070 | 0.0157(1)/0.1781(2) | 0.1549(1)/0.5571(2) | 0.7620(2)/0.6260(2) | 6.37/4.42 |
| Ga1 | 5.8851(2) | 3.6961(2) | 6.8714(2) | 149.47(1) | 3.077 | 0.0166(3)/0.1784(3) | 0.1632(1)/0.5638(7) | 0.7623(8)/0.6259(1) | 6.38/4.29 |
| P2 | 5.8858(1) | 3.6906(1) | 6.8646(2) | 149.11(1) | 3.072 | 0.0167(9)/0.1783(4) | 0.1578(6)/0.5602(8) | 0.7594(6)/0.6277(1) | 5.30/3.75 |
| MnCoSi | 5.8817(3) | 3.6948(7) | 6.8700(4) | 149.30(4) | 3.087 | 0.0140(3)/0.1796(2) | 0.1553(6)/0.5604(1) | 0.7426(6)/0.6231(1) | 6.07/4.15 |
| Co1.7 | 5.8614(8) | 3.6985(2) | 6.8736(7) | 149.01(4) | 3.118 | 0.0230(1)/0.1815(3) | 0.1573(3)/0.5564(7) | 0.7643(1)/0.6268(9) | 4.8/3.57 |
| Fe2 | 5.8718(7) | 3.6983(4) | 6.8775(9) | 149.35(5) | 3.121 | 0.0187(8)/0.1820(4) | 0.1596(6)/0.5635(6) | 0.7688(3)/0.6261(9) | 5.32/3.87 |
| Cu2 | 5.8458(2) | 3.6811(3) | 6.8477(4) | 147.36(2) | 3.100 | 0.0207(1)/0.1810(6) | 0.1619(1)/0.5637(1) | 0.7354(2)/0.6231(3) | 5.70/3.82 |
| In2 | 5.8634(2) | 3.6917(4) | 6.8623(3) | 148.54(3) | 3.099 | 0.0173(8)/1.8072(1) | 0.1589(1)/0.5670(3) | 0.7660(3)/0.6264(9) | 4.28/3.36 |
| Sb2 | 5.8423(1) | 3.6863(2) | 6.8495(4) | 147.51(2) | 3.132 | 0.0290(7)/0.1832(5) | 0.1586(4)/0.5530(2) | 0.7245(5)/0.6286(1) | 4.79/3.31 |
| samples | Bcri @RT (T) | Ttri (K) | References | Samples | Bcri @RT (T) | Ttri (K) | References |
|---|---|---|---|---|---|---|---|
| Al1 | 3.07 | 280 | This work | Ga1 | 2.57 | 280 | This work |
| P2 | 3.39 | 270 | This work | Fe2 | 1.17 | 280 | This work |
| Cu2 | 1.25 | 270 | This work | In2 | 1.46 | 290 | This work |
| Sb2 | 1.11 | 270 | This work | Co1 | 0.91 | 270 | This work |
| Co1.7 | 0.60 | 250 | This work | MnCoSi | 2.54 | 300 | This work |
| MnCoSi0.98 | 1.30 | 260 | [ | MnCo0.95Ni0.05Si | 0.80 | 250 | [ |
| MnCoSi0.98B0.02 | 0.8 | 270 | [ | Mn0.95Fe0.05CoSi a | - | 180 | [ |
| MnCoSi0.92Ge0.08 | 1.50 | 262 | [ | MnCoSi0.95Ge0.05 b | 1.60 | - | [ |
Table 2 The temperature of tricritical point (Ttri) and the critical field (Bcri) for driving the metamagnetic transition at room temperature in MnCoSi-based alloys after the heat treatment of slow cooling.
| samples | Bcri @RT (T) | Ttri (K) | References | Samples | Bcri @RT (T) | Ttri (K) | References |
|---|---|---|---|---|---|---|---|
| Al1 | 3.07 | 280 | This work | Ga1 | 2.57 | 280 | This work |
| P2 | 3.39 | 270 | This work | Fe2 | 1.17 | 280 | This work |
| Cu2 | 1.25 | 270 | This work | In2 | 1.46 | 290 | This work |
| Sb2 | 1.11 | 270 | This work | Co1 | 0.91 | 270 | This work |
| Co1.7 | 0.60 | 250 | This work | MnCoSi | 2.54 | 300 | This work |
| MnCoSi0.98 | 1.30 | 260 | [ | MnCo0.95Ni0.05Si | 0.80 | 250 | [ |
| MnCoSi0.98B0.02 | 0.8 | 270 | [ | Mn0.95Fe0.05CoSi a | - | 180 | [ |
| MnCoSi0.92Ge0.08 | 1.50 | 262 | [ | MnCoSi0.95Ge0.05 b | 1.60 | - | [ |
Fig. 4. (a) The schematic on the formation of texture in MnCoSi alloy and the SEM image of the cross-section of Co1.7. The yellow arrows indicate the spontaneous cracks. (b) The temperature dependence of thermal expansion of Co1.7 and Cu2 in the direction parallel and perpendicular to the texture.
| Magnetic field (T) | Temperature (K) | In2 | Cu2 | Sb2 | Co1.7 | ||||
|---|---|---|---|---|---|---|---|---|---|
| λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | ||
| 1 | 270 | 18 | -59 | 16 | -82 | 72 | -167 | 1226 | -865 |
| 280 | 31 | -65 | 81 | -110 | 130 | -279 | 1140 | -742 | |
| 290 | 50 | -78 | 84 | -159 | 246 | -768 | 1029 | -680 | |
| 300 | 81 | -88 | 210 | -308 | 365 | -646 | 993 | -607 | |
| 2 | 270 | 580 | -529 | 1322 | -1317 | 1270 | -1856 | 1690 | -1184 |
| 280 | 1065 | -1115 | 1187 | -1203 | 1150 | -1659 | 1480 | -1010 | |
| 290 | 1023 | -1078 | 1062 | -1056 | 1033 | -1491 | 1284 | -888 | |
| 300 | 969 | -935 | 983 | -988 | 917 | -1348 | 1186 | -792 | |
Table 3 Magnetostriction of In2, Cu2, Sb2 and Co1.7 under magnetic fields of 1 and 2 T in the temperature range of 270-300 K.
| Magnetic field (T) | Temperature (K) | In2 | Cu2 | Sb2 | Co1.7 | ||||
|---|---|---|---|---|---|---|---|---|---|
| λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | ||
| 1 | 270 | 18 | -59 | 16 | -82 | 72 | -167 | 1226 | -865 |
| 280 | 31 | -65 | 81 | -110 | 130 | -279 | 1140 | -742 | |
| 290 | 50 | -78 | 84 | -159 | 246 | -768 | 1029 | -680 | |
| 300 | 81 | -88 | 210 | -308 | 365 | -646 | 993 | -607 | |
| 2 | 270 | 580 | -529 | 1322 | -1317 | 1270 | -1856 | 1690 | -1184 |
| 280 | 1065 | -1115 | 1187 | -1203 | 1150 | -1659 | 1480 | -1010 | |
| 290 | 1023 | -1078 | 1062 | -1056 | 1033 | -1491 | 1284 | -888 | |
| 300 | 969 | -935 | 983 | -988 | 917 | -1348 | 1186 | -792 | |
Fig. 6. (a) The effects of element substitution on Bcri. (b) The relationship between e/a and Bcri at 300 K in transition-metal-substituted MnCoSi alloys studied in this work and reported before [24]. The M-B curves of Ti1, V1 and V2 at 300 K can be found in Fig. S5 in the Supplementary Material.
Fig. 7. A statistical graphic of the magnetostriction of MnCoSi-based, Fe-Ga and some other magnetic-phase-transition alloys under 1 T [2,4,7,11,12,14,15].
| [1] |
J.P. Joule, Philos. Mag., 30 (1847), pp. 76-87
DOI URL |
| [2] | A.E. Clark, Handbook of Magnetic Materials, Elsevier Science B.V., USA (1980) |
| [3] | D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L.A. Bendersky, S.E. Lofland, M. Wuttig, I. Takeuchi, Nat. Commun., 2 (2011), p. 1529 |
| [4] |
H.D. Chopra, M. Wuttig, Nature, 521 (2015), pp. 340-343
DOI PMID |
| [5] | A.E. Clark, J.P. Teter, O.D. McMasters, J.Appl. Phys., 63 (1988), pp. 3910-3912 |
| [6] |
S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, M. Wun-Fogle, Scr. Mater., 43 (2000), pp. 239-244
DOI URL |
| [7] |
Y.K. He, C.B. Jiang, W. Wu, B. Wang, H.P. Duan, H. Wang, T.L. Zhang, J.M. Wang, J.H. Liu, Z.L. Zhang, P. Stamenov, J.M.D. Coey, H.B. Xu, Acta Mater., 109 (2016), pp. 177-186
DOI URL |
| [8] |
T.Y. Ma, J.M. Gou, S.S. Hu, X.L. Liu, C. Wu, S. Ren, H. Zhao, A.D. Xiao, C.B. Jiang, X.B. Ren, M. Yan, Nat. Commun., 8 (2017), p. 13937
DOI URL |
| [9] |
S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Mater. Sci. Eng. R, 56 (2007), pp. 1-129
DOI URL |
| [10] |
A.G. Olabi, A. Grunwald, Mater. Des., 29 (2008), pp. 469-483
DOI URL |
| [11] |
L. Morellon, P.A. Algarabel, M.R. Ibarra, J. Blasco, B. García-Landa, Z. Arnold, Phys. Rev. B, 58 (1998), pp. R14721-R14724
DOI URL |
| [12] |
S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, Y. Iijima, Appl. Phys. Lett., 79 (2001), pp. 653-655
DOI URL |
| [13] |
U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, L. Schultz, Acta Mater., 57 (2009), pp. 365-370
DOI URL |
| [14] |
J. Liu, S. Aksoy, N. Scheerbaum, M. Acet, O. Gutfleisch, Appl. Phys. Lett., 95 (2009), p. 232515
DOI URL |
| [15] |
Y.Y. Gong, L. Zhang, Q.Q. Cao, D.H. Wang, Y.W. Du, J. Alloys. Compd., 628 (2015), pp. 146-150
DOI URL |
| [16] |
Q.B. Hu, Y. Hu, Y. Fang, D.H. Wang, Q.Q. Cao, Y.T. Yang, J. Li, Y.W. Du, AIP Adv., 7 (2017), p. 056430
DOI URL |
| [17] | X.M. Sun, D.Y. Cong, Z. Li, Y.L. Zhang, Z. Chen, Y. Ren, K.D. Liss, Z.Y. Ma, R.G. Li, Y.H. Qu, Z. Yang, L. Wang, Y.D. Wang, Phys. Rev. Mater., 3 (2019), 034404 |
| [18] |
A. Barcza, Z. Gercsi, K.S. Knight, K.G. Sandeman, Phys. Rev. Lett., 104 (2010), 247202
DOI URL |
| [19] |
Y.Y. Gong, D.H. Wang, Q.Q. Cao, Y.W. Du, T. Zhi, B.C. Zhao, J.M. Dai, Y.P. Sun, H.B. Zhou, Q.Y. Lu, J. Liu, Acta Mater., 98 (2015), pp. 113-118
DOI URL |
| [20] |
Y.Y. Gong, J. Liu, G.Z. Xu, F. Xu, D.H. Wang, Scr. Mater., 127 (2017), pp. 165-168
DOI URL |
| [21] |
Q.B. Hu, Y. Hu, S. Zhang, W. Tang, X.J. He, Z. Li, Q.Q. Cao, D.H. Wang, Y.W. Du, Appl. Phys. Lett., 112 (2018), p. 052404
DOI URL |
| [22] |
C.L. Zhang, H.F. Shi, Y.G. Nie, E.J. Ye, J.H. Wen, Z.D. Han, D.H. Wang, J. Alloys Compd., 784 (2019), pp. 16-21
DOI URL |
| [23] |
K. Morrison, J.D. Moore, K.G. Sandeman, A.D. Caplin, L.F. Cohen, Phys. Rev. B, 79 (2009), 134408
DOI URL |
| [24] |
A. Barcza, Z. Gercsi, H. Michor, K. Suzuki, W. Kockelmann, K.S. Knight, K.G. Sandeman, Phys. Rev. B, 87 (2013), p. 064410
DOI URL |
| [25] |
J. Liu, Y. Si, Y.Y. Gong, G.Z. Xu, E. Liu, F. Xu, J. Alloys Compd., 701 (2017), pp. 858-863
DOI URL |
| [26] |
K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Phys. Rev. B, 74 (2006), 224436
DOI URL |
| [27] |
K. Morrison, Y. Miyoshi, J.D. Moore, A. Barcza, K.G. Sandeman, A.D. Caplin, Phys. Rev. B, 78 (2008), 134418
DOI URL |
| [28] |
Y.D. Zavorotnev, L.I. Medvedeva, B.M. Todris, E.A. Dvornikov, O.Yu.J. Magn, Magn. Mater., 323 (2011), pp. 2808-2812
DOI URL |
| [29] |
A. Szytula, A.T. Pedziwiatr, Z. Tomkowicz, W. Bażeła, J. Magn., Magn. Mater., 25 (1981), pp. 176-186
DOI URL |
| [30] | E.K. Liu, W.H. Wang, L. Feng, W. Zhu, G.J. Li, J.L. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat.Commun., 3 (2012), p. 873 |
| [31] |
J. Liu, Y.Y. Gong, Y.R. You, X.M. You, B.H. Huang, X.F. Miao, G.Z. Xu, F. Xu, E. Brück, Acta Mater., 174 (2019), pp. 450-458
DOI URL |
| [32] |
J. Liu, Y.R. You, I. Batashev, Y.Y. Gong, X.M. You, B.W. Huang, F.Q. Zhang, X.F. Miao, F. Xu, N. van Dijk, E. Brück, Phys. Rev. Appl., 13 (2020), p. 054003
DOI URL |
| [33] | T. Samanta, D.L. Lepkowski, A.U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I.W.H. Oswald, G.T. McCandless, J.Y. Chan, P.W. Adams, D.P. Young, N. Ali, S. Stadler, Phys. Rev. B, 91 (2015) 020401(R) |
| [34] |
Z.Y. Wei, E.K. Liu, Y. Li, G.Z. Xu, X.M. Zhang, G.D. Liu, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, X.X. Zhang, Adv. Electron. Mater., 1 (2015), p. 1500076
DOI URL |
| [35] | J. Liu, Y.Y. Gong, G.Z. Xu, G. Peng, I.A. Shah, N. ul Hassan, F.Xu, Sci. Rep., 6 (2016), p. 23386 |
| [36] | O. Beckman, L. Lundgren, Handbook of Magnetic Materials, vol. 6, Elsevier Science B.V., USA (1991) |
| [37] |
G.A. Landrum, R. Hoffmann, J. Evers, H. Boysen, Inorg. Chem., 37 (1998), pp. 5754-5763
DOI URL |
| [38] |
J.H. Xu, W.Y. Yang, Q.H. Du, Y.H. Xia, H.L. Du, J.B. Yang, C.S. Wang, J.Z. Han, S.Q. Liu, Y. Zhang, Y.C. Yang, J. Phys. D-Appl. Phys., 47 (2014), p. 065003
DOI URL |
| [39] |
J.H. Chen, Z.Y. Wei, E.K. Liu, X. Qi, W.H. Wang, G.H. Wu, J. Magn., Magn. Mater., 387 (2015), pp. 159-164
DOI URL |
| [40] |
Z. Gercsi, K.G. Sandeman, Phys. Rev. B, 81 (2010), p. 224426
DOI URL |
| [41] |
Z. Gercsi, K. Hono, K.G. Sandeman, Phys. Rev. B, 83 (2010), p. 174403
DOI URL |
| [42] | J.B. Staunton, M. dos Santos Dias, J. Peace, Z. Gercsi, K.G. Sandeman, Phys. Rev. B, 87 (2013) 060404(R) |
| [43] |
K. Morrison, A. Barcza, J.D. Moore, K.G. Sandeman, M.K. Chattopadhyay, S.B. Roy, A.D. Caplin, L.F. Cohen, J. Phys. D-Appl. Phys., 43 (2010), p. 195001
DOI URL |
| [44] |
K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V.K. Lindroos, Scr. Mater., 44 (2001), pp. 475-480
DOI URL |
| [45] |
C. Jiang, T. Liang, H. Xu, M. Zhang, G. Wu, Appl. Phys. Lett., 81 (2002), p. 2818
DOI URL |
| [46] |
C. Jiang, J. Wang, H. Xu, Appl. Phys. Lett., 86 (2005), p. 252508
DOI URL |
| [47] |
V. Johnson, Inorg. Chem., 14 (1975), pp. 1117-1120
DOI URL |
| [1] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
