J. Mater. Sci. Technol. ›› 2021, Vol. 76: 104-110.DOI: 10.1016/j.jmst.2020.11.011
• Research article • Previous Articles Next Articles
Jun Liua, Yuanyuan Gonga,*(), Fengqi Zhangb, Yurong Youa, Guizhou Xua, Xuefei Miaoa, Feng Xua,*(
)
Received:
2020-06-16
Revised:
2020-08-06
Accepted:
2020-09-04
Published:
2021-06-20
Online:
2020-11-06
Contact:
Yuanyuan Gong,Feng Xu
About author:
xufeng@njust.edu.cn (F. Xu).Jun Liu, Yuanyuan Gong, Fengqi Zhang, Yurong You, Guizhou Xu, Xuefei Miao, Feng Xu. Large, low-field and reversible magnetostrictive effect in MnCoSi-based metamagnet at room temperature[J]. J. Mater. Sci. Technol., 2021, 76: 104-110.
Fig. 1. (a) M-B curves for stoichiometric MnCoSi alloy. (b) Field-Temperature diagram. Blue lines: tricritical behavior in stoichiometric MnCoSi alloy. Red lines: tricritical behavior with reduced Ttri and Bcri. Bcri↑ and Bcri↓ represent the values of critical field in field-up and field-down processes, respectively. The magnetostriction curves at room temperature are also included as insets.
Samples | a (Å) | b (Å) | c (Å) | V (Å3) | d (Å) | xMn/zMn | xCo/zCo | xSi/zSi | Rwp/Rp (%) |
---|---|---|---|---|---|---|---|---|---|
Ti3 | 5.8918(9) | 3.6924(5) | 6.8672(5) | 149.40(5) | 3.075 | 0.0150(2)/0.1785(5) | 0.1536(8)/0.5652(2) | 0.7703(8)/0.6199(7) | 5.37/3.69 |
V3 | 5.8891(5) | 3.6909(1) | 6.8674(3) | 149.27(1) | 3.065 | 0.0164(4)/0.1776(4) | 0.1537(1)/0.5586(6) | 0.7729(7)/0.6178(8) | 5.79/3.97 |
Al1 | 5.8793(1) | 3.6926(6) | 6.8651(8) | 149.04(4) | 3.070 | 0.0157(1)/0.1781(2) | 0.1549(1)/0.5571(2) | 0.7620(2)/0.6260(2) | 6.37/4.42 |
Ga1 | 5.8851(2) | 3.6961(2) | 6.8714(2) | 149.47(1) | 3.077 | 0.0166(3)/0.1784(3) | 0.1632(1)/0.5638(7) | 0.7623(8)/0.6259(1) | 6.38/4.29 |
P2 | 5.8858(1) | 3.6906(1) | 6.8646(2) | 149.11(1) | 3.072 | 0.0167(9)/0.1783(4) | 0.1578(6)/0.5602(8) | 0.7594(6)/0.6277(1) | 5.30/3.75 |
MnCoSi | 5.8817(3) | 3.6948(7) | 6.8700(4) | 149.30(4) | 3.087 | 0.0140(3)/0.1796(2) | 0.1553(6)/0.5604(1) | 0.7426(6)/0.6231(1) | 6.07/4.15 |
Co1.7 | 5.8614(8) | 3.6985(2) | 6.8736(7) | 149.01(4) | 3.118 | 0.0230(1)/0.1815(3) | 0.1573(3)/0.5564(7) | 0.7643(1)/0.6268(9) | 4.8/3.57 |
Fe2 | 5.8718(7) | 3.6983(4) | 6.8775(9) | 149.35(5) | 3.121 | 0.0187(8)/0.1820(4) | 0.1596(6)/0.5635(6) | 0.7688(3)/0.6261(9) | 5.32/3.87 |
Cu2 | 5.8458(2) | 3.6811(3) | 6.8477(4) | 147.36(2) | 3.100 | 0.0207(1)/0.1810(6) | 0.1619(1)/0.5637(1) | 0.7354(2)/0.6231(3) | 5.70/3.82 |
In2 | 5.8634(2) | 3.6917(4) | 6.8623(3) | 148.54(3) | 3.099 | 0.0173(8)/1.8072(1) | 0.1589(1)/0.5670(3) | 0.7660(3)/0.6264(9) | 4.28/3.36 |
Sb2 | 5.8423(1) | 3.6863(2) | 6.8495(4) | 147.51(2) | 3.132 | 0.0290(7)/0.1832(5) | 0.1586(4)/0.5530(2) | 0.7245(5)/0.6286(1) | 4.79/3.31 |
Table 1 Lattice parameters a, b and c, unit-cell volume V, nearest Mn-Mn distance d and atomic occupancy sites for studied MnCoSi-based samples. The space group is Pnma and Wyckoff position is 4c (x, 1/4, z).
Samples | a (Å) | b (Å) | c (Å) | V (Å3) | d (Å) | xMn/zMn | xCo/zCo | xSi/zSi | Rwp/Rp (%) |
---|---|---|---|---|---|---|---|---|---|
Ti3 | 5.8918(9) | 3.6924(5) | 6.8672(5) | 149.40(5) | 3.075 | 0.0150(2)/0.1785(5) | 0.1536(8)/0.5652(2) | 0.7703(8)/0.6199(7) | 5.37/3.69 |
V3 | 5.8891(5) | 3.6909(1) | 6.8674(3) | 149.27(1) | 3.065 | 0.0164(4)/0.1776(4) | 0.1537(1)/0.5586(6) | 0.7729(7)/0.6178(8) | 5.79/3.97 |
Al1 | 5.8793(1) | 3.6926(6) | 6.8651(8) | 149.04(4) | 3.070 | 0.0157(1)/0.1781(2) | 0.1549(1)/0.5571(2) | 0.7620(2)/0.6260(2) | 6.37/4.42 |
Ga1 | 5.8851(2) | 3.6961(2) | 6.8714(2) | 149.47(1) | 3.077 | 0.0166(3)/0.1784(3) | 0.1632(1)/0.5638(7) | 0.7623(8)/0.6259(1) | 6.38/4.29 |
P2 | 5.8858(1) | 3.6906(1) | 6.8646(2) | 149.11(1) | 3.072 | 0.0167(9)/0.1783(4) | 0.1578(6)/0.5602(8) | 0.7594(6)/0.6277(1) | 5.30/3.75 |
MnCoSi | 5.8817(3) | 3.6948(7) | 6.8700(4) | 149.30(4) | 3.087 | 0.0140(3)/0.1796(2) | 0.1553(6)/0.5604(1) | 0.7426(6)/0.6231(1) | 6.07/4.15 |
Co1.7 | 5.8614(8) | 3.6985(2) | 6.8736(7) | 149.01(4) | 3.118 | 0.0230(1)/0.1815(3) | 0.1573(3)/0.5564(7) | 0.7643(1)/0.6268(9) | 4.8/3.57 |
Fe2 | 5.8718(7) | 3.6983(4) | 6.8775(9) | 149.35(5) | 3.121 | 0.0187(8)/0.1820(4) | 0.1596(6)/0.5635(6) | 0.7688(3)/0.6261(9) | 5.32/3.87 |
Cu2 | 5.8458(2) | 3.6811(3) | 6.8477(4) | 147.36(2) | 3.100 | 0.0207(1)/0.1810(6) | 0.1619(1)/0.5637(1) | 0.7354(2)/0.6231(3) | 5.70/3.82 |
In2 | 5.8634(2) | 3.6917(4) | 6.8623(3) | 148.54(3) | 3.099 | 0.0173(8)/1.8072(1) | 0.1589(1)/0.5670(3) | 0.7660(3)/0.6264(9) | 4.28/3.36 |
Sb2 | 5.8423(1) | 3.6863(2) | 6.8495(4) | 147.51(2) | 3.132 | 0.0290(7)/0.1832(5) | 0.1586(4)/0.5530(2) | 0.7245(5)/0.6286(1) | 4.79/3.31 |
samples | Bcri @RT (T) | Ttri (K) | References | Samples | Bcri @RT (T) | Ttri (K) | References |
---|---|---|---|---|---|---|---|
Al1 | 3.07 | 280 | This work | Ga1 | 2.57 | 280 | This work |
P2 | 3.39 | 270 | This work | Fe2 | 1.17 | 280 | This work |
Cu2 | 1.25 | 270 | This work | In2 | 1.46 | 290 | This work |
Sb2 | 1.11 | 270 | This work | Co1 | 0.91 | 270 | This work |
Co1.7 | 0.60 | 250 | This work | MnCoSi | 2.54 | 300 | This work |
MnCoSi0.98 | 1.30 | 260 | [ | MnCo0.95Ni0.05Si | 0.80 | 250 | [ |
MnCoSi0.98B0.02 | 0.8 | 270 | [ | Mn0.95Fe0.05CoSi a | - | 180 | [ |
MnCoSi0.92Ge0.08 | 1.50 | 262 | [ | MnCoSi0.95Ge0.05 b | 1.60 | - | [ |
Table 2 The temperature of tricritical point (Ttri) and the critical field (Bcri) for driving the metamagnetic transition at room temperature in MnCoSi-based alloys after the heat treatment of slow cooling.
samples | Bcri @RT (T) | Ttri (K) | References | Samples | Bcri @RT (T) | Ttri (K) | References |
---|---|---|---|---|---|---|---|
Al1 | 3.07 | 280 | This work | Ga1 | 2.57 | 280 | This work |
P2 | 3.39 | 270 | This work | Fe2 | 1.17 | 280 | This work |
Cu2 | 1.25 | 270 | This work | In2 | 1.46 | 290 | This work |
Sb2 | 1.11 | 270 | This work | Co1 | 0.91 | 270 | This work |
Co1.7 | 0.60 | 250 | This work | MnCoSi | 2.54 | 300 | This work |
MnCoSi0.98 | 1.30 | 260 | [ | MnCo0.95Ni0.05Si | 0.80 | 250 | [ |
MnCoSi0.98B0.02 | 0.8 | 270 | [ | Mn0.95Fe0.05CoSi a | - | 180 | [ |
MnCoSi0.92Ge0.08 | 1.50 | 262 | [ | MnCoSi0.95Ge0.05 b | 1.60 | - | [ |
Fig. 4. (a) The schematic on the formation of texture in MnCoSi alloy and the SEM image of the cross-section of Co1.7. The yellow arrows indicate the spontaneous cracks. (b) The temperature dependence of thermal expansion of Co1.7 and Cu2 in the direction parallel and perpendicular to the texture.
Magnetic field (T) | Temperature (K) | In2 | Cu2 | Sb2 | Co1.7 | ||||
---|---|---|---|---|---|---|---|---|---|
λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | ||
1 | 270 | 18 | -59 | 16 | -82 | 72 | -167 | 1226 | -865 |
280 | 31 | -65 | 81 | -110 | 130 | -279 | 1140 | -742 | |
290 | 50 | -78 | 84 | -159 | 246 | -768 | 1029 | -680 | |
300 | 81 | -88 | 210 | -308 | 365 | -646 | 993 | -607 | |
2 | 270 | 580 | -529 | 1322 | -1317 | 1270 | -1856 | 1690 | -1184 |
280 | 1065 | -1115 | 1187 | -1203 | 1150 | -1659 | 1480 | -1010 | |
290 | 1023 | -1078 | 1062 | -1056 | 1033 | -1491 | 1284 | -888 | |
300 | 969 | -935 | 983 | -988 | 917 | -1348 | 1186 | -792 |
Table 3 Magnetostriction of In2, Cu2, Sb2 and Co1.7 under magnetic fields of 1 and 2 T in the temperature range of 270-300 K.
Magnetic field (T) | Temperature (K) | In2 | Cu2 | Sb2 | Co1.7 | ||||
---|---|---|---|---|---|---|---|---|---|
λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | λ// (ppm) | λ⊥ (ppm) | ||
1 | 270 | 18 | -59 | 16 | -82 | 72 | -167 | 1226 | -865 |
280 | 31 | -65 | 81 | -110 | 130 | -279 | 1140 | -742 | |
290 | 50 | -78 | 84 | -159 | 246 | -768 | 1029 | -680 | |
300 | 81 | -88 | 210 | -308 | 365 | -646 | 993 | -607 | |
2 | 270 | 580 | -529 | 1322 | -1317 | 1270 | -1856 | 1690 | -1184 |
280 | 1065 | -1115 | 1187 | -1203 | 1150 | -1659 | 1480 | -1010 | |
290 | 1023 | -1078 | 1062 | -1056 | 1033 | -1491 | 1284 | -888 | |
300 | 969 | -935 | 983 | -988 | 917 | -1348 | 1186 | -792 |
Fig. 6. (a) The effects of element substitution on Bcri. (b) The relationship between e/a and Bcri at 300 K in transition-metal-substituted MnCoSi alloys studied in this work and reported before [24]. The M-B curves of Ti1, V1 and V2 at 300 K can be found in Fig. S5 in the Supplementary Material.
Fig. 7. A statistical graphic of the magnetostriction of MnCoSi-based, Fe-Ga and some other magnetic-phase-transition alloys under 1 T [2,4,7,11,12,14,15].
[1] |
J.P. Joule, Philos. Mag., 30 (1847), pp. 76-87
DOI URL |
[2] | A.E. Clark, Handbook of Magnetic Materials, Elsevier Science B.V., USA (1980) |
[3] | D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L.A. Bendersky, S.E. Lofland, M. Wuttig, I. Takeuchi, Nat. Commun., 2 (2011), p. 1529 |
[4] |
H.D. Chopra, M. Wuttig, Nature, 521 (2015), pp. 340-343
DOI PMID |
[5] | A.E. Clark, J.P. Teter, O.D. McMasters, J.Appl. Phys., 63 (1988), pp. 3910-3912 |
[6] |
S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, M. Wun-Fogle, Scr. Mater., 43 (2000), pp. 239-244
DOI URL |
[7] |
Y.K. He, C.B. Jiang, W. Wu, B. Wang, H.P. Duan, H. Wang, T.L. Zhang, J.M. Wang, J.H. Liu, Z.L. Zhang, P. Stamenov, J.M.D. Coey, H.B. Xu, Acta Mater., 109 (2016), pp. 177-186
DOI URL |
[8] |
T.Y. Ma, J.M. Gou, S.S. Hu, X.L. Liu, C. Wu, S. Ren, H. Zhao, A.D. Xiao, C.B. Jiang, X.B. Ren, M. Yan, Nat. Commun., 8 (2017), p. 13937
DOI URL |
[9] |
S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Mater. Sci. Eng. R, 56 (2007), pp. 1-129
DOI URL |
[10] |
A.G. Olabi, A. Grunwald, Mater. Des., 29 (2008), pp. 469-483
DOI URL |
[11] |
L. Morellon, P.A. Algarabel, M.R. Ibarra, J. Blasco, B. García-Landa, Z. Arnold, Phys. Rev. B, 58 (1998), pp. R14721-R14724
DOI URL |
[12] |
S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, Y. Iijima, Appl. Phys. Lett., 79 (2001), pp. 653-655
DOI URL |
[13] |
U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, L. Schultz, Acta Mater., 57 (2009), pp. 365-370
DOI URL |
[14] |
J. Liu, S. Aksoy, N. Scheerbaum, M. Acet, O. Gutfleisch, Appl. Phys. Lett., 95 (2009), p. 232515
DOI URL |
[15] |
Y.Y. Gong, L. Zhang, Q.Q. Cao, D.H. Wang, Y.W. Du, J. Alloys. Compd., 628 (2015), pp. 146-150
DOI URL |
[16] |
Q.B. Hu, Y. Hu, Y. Fang, D.H. Wang, Q.Q. Cao, Y.T. Yang, J. Li, Y.W. Du, AIP Adv., 7 (2017), p. 056430
DOI URL |
[17] | X.M. Sun, D.Y. Cong, Z. Li, Y.L. Zhang, Z. Chen, Y. Ren, K.D. Liss, Z.Y. Ma, R.G. Li, Y.H. Qu, Z. Yang, L. Wang, Y.D. Wang, Phys. Rev. Mater., 3 (2019), 034404 |
[18] |
A. Barcza, Z. Gercsi, K.S. Knight, K.G. Sandeman, Phys. Rev. Lett., 104 (2010), 247202
DOI URL |
[19] |
Y.Y. Gong, D.H. Wang, Q.Q. Cao, Y.W. Du, T. Zhi, B.C. Zhao, J.M. Dai, Y.P. Sun, H.B. Zhou, Q.Y. Lu, J. Liu, Acta Mater., 98 (2015), pp. 113-118
DOI URL |
[20] |
Y.Y. Gong, J. Liu, G.Z. Xu, F. Xu, D.H. Wang, Scr. Mater., 127 (2017), pp. 165-168
DOI URL |
[21] |
Q.B. Hu, Y. Hu, S. Zhang, W. Tang, X.J. He, Z. Li, Q.Q. Cao, D.H. Wang, Y.W. Du, Appl. Phys. Lett., 112 (2018), p. 052404
DOI URL |
[22] |
C.L. Zhang, H.F. Shi, Y.G. Nie, E.J. Ye, J.H. Wen, Z.D. Han, D.H. Wang, J. Alloys Compd., 784 (2019), pp. 16-21
DOI URL |
[23] |
K. Morrison, J.D. Moore, K.G. Sandeman, A.D. Caplin, L.F. Cohen, Phys. Rev. B, 79 (2009), 134408
DOI URL |
[24] |
A. Barcza, Z. Gercsi, H. Michor, K. Suzuki, W. Kockelmann, K.S. Knight, K.G. Sandeman, Phys. Rev. B, 87 (2013), p. 064410
DOI URL |
[25] |
J. Liu, Y. Si, Y.Y. Gong, G.Z. Xu, E. Liu, F. Xu, J. Alloys Compd., 701 (2017), pp. 858-863
DOI URL |
[26] |
K.G. Sandeman, R. Daou, S. Özcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Phys. Rev. B, 74 (2006), 224436
DOI URL |
[27] |
K. Morrison, Y. Miyoshi, J.D. Moore, A. Barcza, K.G. Sandeman, A.D. Caplin, Phys. Rev. B, 78 (2008), 134418
DOI URL |
[28] |
Y.D. Zavorotnev, L.I. Medvedeva, B.M. Todris, E.A. Dvornikov, O.Yu.J. Magn, Magn. Mater., 323 (2011), pp. 2808-2812
DOI URL |
[29] |
A. Szytula, A.T. Pedziwiatr, Z. Tomkowicz, W. Bażeła, J. Magn., Magn. Mater., 25 (1981), pp. 176-186
DOI URL |
[30] | E.K. Liu, W.H. Wang, L. Feng, W. Zhu, G.J. Li, J.L. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat.Commun., 3 (2012), p. 873 |
[31] |
J. Liu, Y.Y. Gong, Y.R. You, X.M. You, B.H. Huang, X.F. Miao, G.Z. Xu, F. Xu, E. Brück, Acta Mater., 174 (2019), pp. 450-458
DOI URL |
[32] |
J. Liu, Y.R. You, I. Batashev, Y.Y. Gong, X.M. You, B.W. Huang, F.Q. Zhang, X.F. Miao, F. Xu, N. van Dijk, E. Brück, Phys. Rev. Appl., 13 (2020), p. 054003
DOI URL |
[33] | T. Samanta, D.L. Lepkowski, A.U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I.W.H. Oswald, G.T. McCandless, J.Y. Chan, P.W. Adams, D.P. Young, N. Ali, S. Stadler, Phys. Rev. B, 91 (2015) 020401(R) |
[34] |
Z.Y. Wei, E.K. Liu, Y. Li, G.Z. Xu, X.M. Zhang, G.D. Liu, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, X.X. Zhang, Adv. Electron. Mater., 1 (2015), p. 1500076
DOI URL |
[35] | J. Liu, Y.Y. Gong, G.Z. Xu, G. Peng, I.A. Shah, N. ul Hassan, F.Xu, Sci. Rep., 6 (2016), p. 23386 |
[36] | O. Beckman, L. Lundgren, Handbook of Magnetic Materials, vol. 6, Elsevier Science B.V., USA (1991) |
[37] |
G.A. Landrum, R. Hoffmann, J. Evers, H. Boysen, Inorg. Chem., 37 (1998), pp. 5754-5763
DOI URL |
[38] |
J.H. Xu, W.Y. Yang, Q.H. Du, Y.H. Xia, H.L. Du, J.B. Yang, C.S. Wang, J.Z. Han, S.Q. Liu, Y. Zhang, Y.C. Yang, J. Phys. D-Appl. Phys., 47 (2014), p. 065003
DOI URL |
[39] |
J.H. Chen, Z.Y. Wei, E.K. Liu, X. Qi, W.H. Wang, G.H. Wu, J. Magn., Magn. Mater., 387 (2015), pp. 159-164
DOI URL |
[40] |
Z. Gercsi, K.G. Sandeman, Phys. Rev. B, 81 (2010), p. 224426
DOI URL |
[41] |
Z. Gercsi, K. Hono, K.G. Sandeman, Phys. Rev. B, 83 (2010), p. 174403
DOI URL |
[42] | J.B. Staunton, M. dos Santos Dias, J. Peace, Z. Gercsi, K.G. Sandeman, Phys. Rev. B, 87 (2013) 060404(R) |
[43] |
K. Morrison, A. Barcza, J.D. Moore, K.G. Sandeman, M.K. Chattopadhyay, S.B. Roy, A.D. Caplin, L.F. Cohen, J. Phys. D-Appl. Phys., 43 (2010), p. 195001
DOI URL |
[44] |
K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V.K. Lindroos, Scr. Mater., 44 (2001), pp. 475-480
DOI URL |
[45] |
C. Jiang, T. Liang, H. Xu, M. Zhang, G. Wu, Appl. Phys. Lett., 81 (2002), p. 2818
DOI URL |
[46] |
C. Jiang, J. Wang, H. Xu, Appl. Phys. Lett., 86 (2005), p. 252508
DOI URL |
[47] |
V. Johnson, Inorg. Chem., 14 (1975), pp. 1117-1120
DOI URL |
[1] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||