J. Mater. Sci. Technol. ›› 2021, Vol. 76: 95-103.DOI: 10.1016/j.jmst.2020.11.013
• Research article • Previous Articles Next Articles
Kyu-Sik Kima, Sangsun Yangb, Myeong-Se Kimc, Kee-Ahn Leea,*()
Received:
2020-06-29
Revised:
2020-09-24
Accepted:
2020-09-29
Published:
2021-06-20
Online:
2020-11-06
Contact:
Kee-Ahn Lee
About author:
*E-mail address: keeahn@inha.ac.kr (K.-A. Lee).Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting[J]. J. Mater. Sci. Technol., 2021, 76: 95-103.
Ni | Cr | Co | Al | W | Ti | Mo | Ta | Nb | C | |
---|---|---|---|---|---|---|---|---|---|---|
Standard IN738LC | Bal. | 15.5-16.5 | 8.0-9.0 | 3.2-3.7 | 2.4-2.8 | 3.0-3.5 | 1.5-2.0 | 1.5-2.0 | <0.91 | <0.11 |
SLM IN738LC | 16.5 | 8.54 | 2.74 | 2.39 | 3.35 | 1.60 | 1.75 | 0.87 | 0.11 |
Table 1 Standard chemical compositions of IN738LC alloy and SLM IN738LC used in the present study.
Ni | Cr | Co | Al | W | Ti | Mo | Ta | Nb | C | |
---|---|---|---|---|---|---|---|---|---|---|
Standard IN738LC | Bal. | 15.5-16.5 | 8.0-9.0 | 3.2-3.7 | 2.4-2.8 | 3.0-3.5 | 1.5-2.0 | 1.5-2.0 | <0.91 | <0.11 |
SLM IN738LC | 16.5 | 8.54 | 2.74 | 2.39 | 3.35 | 1.60 | 1.75 | 0.87 | 0.11 |
Fig. 1. (a) Laser scanning strategy used in the current study (chessboard scanning with adjacent chessboard block scanned in 90° rotated direction.) and (b) macrograph of selectively manufactured IN738LC.
Fig. 2. Micrographs of defects of selectively manufactured IN738LC alloys under different conditions; (a) as-built, and (b) after solid-solution + aged (blue arrows: pores, red arrows: shrinkage pores or cracks).
Fig. 3. Microstructures of SLM IN738LC observed by EBSD and FE-SEM; (a) grain boundary map, (b) low magnification image, and (c) high magnification image of the as-built sample. (d) grain boundary map, (e) low magnification image, and (f) high magnification image of the heat-treated sample. Black and white lines in (a) and (d) represent high angle grain boundary (over 15°) and low angle grain boundary (2°-15°), respectively.
Fig. 5. Variation of TGA weight gain with oxidation time at different temperatures for (a) the as-built IN738LC and (b) compared with heat-treated IN738LC.
Fig. 7. SEM micrographs of surface morphologies after oxidation tests at different temperatures for the (a) as-built oxidized at 1273 K, (b) as-built oxidized at 1373 K, (c) heat-treated SLM IN738LC oxidized at 1273 K, and (d) heat-treated SLM IN738LC oxidized at 1373 K.
Fig. 8. Weight gain per unit area versus oxidation time for IN738LC oxidized at different temperatures; (a) 1273 K and (b) 1373 K. Square of weight grain per unit area versus oxidation time at (c) 1273 K and (d) 1373 K.
Fig. 10. Cross-sectional views and element mappings after isothermal oxidation tests for the (a) as-built IN738LC oxidized at 1273 K, (b) as-built IN738LC oxidized at 1373 K, (c) heat-treated IN738LC oxidized at 1273 K, and (d) heat-treated IN738LC oxidized at 1373 K.
[1] | William F. Smith, Structure and Properties of Engineering Alloys (2nd ed), McGraw-Hill, New York (1993) |
[2] | A. Thakur, Microstructural Responses of a Nickel-base Cast IN-738 Superalloy to a Variety of Pre-weld Heat-treatments, Master Thesis, The University of Manitoba (1997) |
[3] |
A. Sato, Y.-L. Chiu, R.C. Reed, Acta Mater., 59 (2011), pp. 225-240
DOI URL |
[4] |
C.S. Giggings, F.S. Pettit, J. Electrochem. Soc., 118 (1971), pp. 1782-1790
DOI URL |
[5] |
F. Abe, H. Araki, H. Yoshida, M. Okada, Oxid. Met., 27 (1987), pp. 21-36
DOI URL |
[6] |
M. Bensch, A. Sato, N. Warnken, E. Affeldt, R.C. Reed, U. Glatzel, Acta Mater., 60 (2012), pp. 5468-5480
DOI URL |
[7] |
T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, M. Sennour, Mater. Sci. Eng. A, 534 (2012), pp. 446-451
DOI URL |
[8] |
L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, R.B. Wicker, J. Mater. Res. Technol., 1 (2012), pp. 42-54
DOI URL |
[9] |
Y.L. Kuo, S. Horikawa, K. Kakehi, Scr. Mater., 129 (2017), pp. 74-78
DOI URL |
[10] |
J. Li, H.M. Wang, Mater. Sci. Eng. A, 527 (2010), pp. 4823-4829
DOI URL |
[11] |
S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, R.R. Dehoff, Metallur. Mater. Trans. A, 49 (2018), pp. 3764-3780
DOI URL |
[12] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater., 94 (2015), pp. 59-68
DOI URL |
[13] | Y.S. Lee, W. Zhang, Addit. Manuf., 12 (2016), pp. 178-188 |
[14] | Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma, A.M. Beese, Mater. Design, 113 (2017), pp. 169-177 |
[15] |
G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci. Eng. A, 509 (2009), pp. 98-104
DOI URL |
[16] |
E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, J. Mater, Process. Tech., 215 (2015), pp. 123-131
DOI URL |
[17] |
Q. Jia, D. Gu, J. Alloys. Compd., 585 (2014), pp. 713-721
DOI URL |
[18] |
H.E. Helmer, C. Ko̎rner, R.F. Singer, J. Mater. Res., 29 (2014), pp. 1987-1996
DOI URL |
[19] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Int. J. Mach. Tool. Manu., 109 (2016), pp. 147-157
DOI URL |
[20] |
T. Trosch, J. Stro̎βner, R. Vo̎lkl, U. Glatzel, Mater. Lett., 164 (2016), pp. 428-431
DOI URL |
[21] |
Y.J. Kang, S. Yang, Y.K. Kim, B. Almangour, K.A. Lee, Corros. Sci., 158 (2019), 108082
DOI URL |
[22] |
C. Pei, D. Shi, H. Yuan, H. Li, Mater. Sci. Eng. A, 759 (2019), pp. 278-287
DOI URL |
[23] |
M. Ni, S. Liu, C. Chen, R. Li, X. Zhang, K. Zhou, Mater. Sci. Eng. A, 748 (2019), pp. 275-285
DOI URL |
[24] |
K. Kunze, T. Etter, J. Gra̎sslin, V. Shklover, Mater. Sci. Eng. A, 620 (2015), pp. 213-222
DOI URL |
[25] |
R. Engeli, T. Etter, S. Ho̎vel, K. Wegener, J. Mater. Process. Tech., 229 (2016), pp. 484-491
DOI URL |
[26] |
K.C. Chen, T.C. Chen, R.K. Shiue, L.W. Tsay, Metals, 8 (2018), p. 387
DOI URL |
[27] |
M. Zhong, H. Sun, W. Liu, X. Zhu, J. He, Scr. Mater., 53 (2005), pp. 159-164
DOI URL |
[28] | O.M.D.M. Messe, R. Munoz-Moreno, T. Illston, S. Baker, H.J. Stone, Addit. Manuf., 22 (2018), pp. 394-404 |
[29] | A. Ramakrishnan, G.P. Dinda, Mater. Sci. Eng.A, 740-741 (2019), pp. 1-13 |
[30] |
F. Wang, Oxid. Met., 48 (1997), pp. 215-224
DOI URL |
[31] |
S. Geng, F. Wang, S. Zhu, Oxid. Met., 57 (2002), pp. 231-243
DOI URL |
[32] |
S. Geng, F. Wang, S. Zhang, Surf. Coat. Tech., 167 (2003), pp. 161-164
DOI URL |
[33] |
S. Seal, S.C. Kuiry, L.A. Bracho, Oxid. Met., 56 (2001), pp. 583-603
DOI URL |
[34] |
C.-Y. Jo, H.-M. Kim, Mater. Sci. Technol., 19 (2003), pp. 1671-1676
DOI URL |
[35] |
R. Molins, G. Hochstetter, J.C. Chassaigne, E. Andrieu, Acta Mater., 45 (1997), pp. 663-674
DOI URL |
[36] |
S. Dryepondt, D. Monceau, F. Crabos, E. Andrieu, Acta Mater., 53 (2005), pp. 4199-4209
DOI URL |
[37] |
N. El-Bagoury, M. Waly, A. Nofal, Mater. Sci. Eng. A, 487 (2008), pp. 152-161
DOI URL |
[38] |
H.T. Mallikarjuna, W.F. Caley, N.L. Richards, Corros. Sci., 147 (2019), pp. 394-405
DOI |
[39] |
B. Vanderbroucke, F.-P. Kruth, Rapid Prototyp. J., 13 (2007), pp. 196-203
DOI URL |
[40] |
H.J. Grabke, Surf. Interface Anal., 30 (2000), pp. 112-119
DOI URL |
[41] |
B. Pieraggi, Oxid. Met., 27 (1987), pp. 177-185
DOI URL |
[42] |
W.C. Hagel, A.U. Seybolt, J. Electrochem. Soc., 108 (1961), pp. 1146-1152
DOI URL |
[43] |
N.B. Pilling, R.E. Bedworth, J. Ind. Eng. Chem., 17 (1925), pp. 372-376
DOI URL |
[44] |
E.P. Busso, H.E. Evans, Z.Q. Qian, M.P. Taylor, Acta Mater., 58 (2010), pp. 1242-1251
DOI URL |
[45] |
H.J.T. Ellingham, J. Soc. Chem. Ind., 63 (1944), pp. 125-133
DOI URL |
[46] |
C.V. Robino, Metall. Mater. Trans. B, 27 (1996), pp. 65-69
DOI URL |
[47] |
K.E. Yoon, R.D. Noebe, D.N. Seidman, Acta Mater., 55 (2007), pp. 1159-1169
DOI URL |
[48] |
C.E. Campbell, W.J. Boettinger, U.R. Kattner, Acta Mater., 50 (2002), pp. 775-792
DOI URL |
[49] | D. Coutsoradis, P. Felix, H. Fischmeister, L. Habraken, Y. Linblon, M.O. Speidel, High Temperature Alloys for Gas Turbines, Applied Science Publisher, London (1978), p. 109 |
[50] | P. Felix, A.B. Hart, J.B. Cutler, Deposition and Corrosion in Gas Turbines, Applied Science Publisher, London (1972), p. 331 |
[51] | C. Wagner, Corros. Sci., 5 (1965) 775-764 |
[52] |
M. Chen, M. Shen, S. Zhu, F. Wang, X. Wang, Corros. Sci., 73 (2013), pp. 331-341
DOI URL |
[1] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[2] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[3] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[4] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[5] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[6] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[7] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[8] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[9] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[10] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[11] | Yuan Zhong, Leifeng Liu, Ji Zou, Xiaodong Li, Daqing Cui, Zhijian Shen. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 97-105. |
[12] | Huihui Yang, Guanyi Jing, Piao Gao, Zemin Wang, Xiangyou Li. Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718: From single tracks to cuboid samples [J]. J. Mater. Sci. Technol., 2020, 51(0): 137-150. |
[13] | Chao Cai, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Chua Dong Qiu, Chen-Nan Sun, Jie Liu, Qingsong Wei, Yusheng Shi. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance [J]. J. Mater. Sci. Technol., 2020, 57(0): 51-64. |
[14] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[15] | Juan Hou, Wei Chen, Zhuoer Chen, Kai Zhang, Aijun Huang. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel [J]. J. Mater. Sci. Technol., 2020, 48(0): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||