J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (9): 909-918.DOI: 10.1016/j.jmst.2016.06.003
• Orginal Article • Previous Articles Next Articles
Wang C.1,Yang H.T.2,Li X.1,*(),Zheng Y.F.2,**(
)
Received:
2016-03-20
Accepted:
2016-05-31
Online:
2016-09-20
Published:
2016-11-02
Contact:
Li X.,Zheng Y.F.
Wang C.,Yang H.T.,Li X.,Zheng Y.F.. In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals[J]. J. Mater. Sci. Technol., 2016, 32(9): 909-918.
Alloy | Al | Cu | Mg | Zn |
---|---|---|---|---|
ZA4-1 | 3.5-4.5 | 0.75-1.25 | 0.03-0.08 | Bal. |
ZA4-3 | 3.5-4.3 | 2.5-3.2 | 0.03-0.06 | Bal. |
ZA6-1 | 5.6-6.0 | 1.2-1.6 | — | Bal. |
Table 1 Chemical compositions (wt%) of commercial Zn alloys
Alloy | Al | Cu | Mg | Zn |
---|---|---|---|---|
ZA4-1 | 3.5-4.5 | 0.75-1.25 | 0.03-0.08 | Bal. |
ZA4-3 | 3.5-4.3 | 2.5-3.2 | 0.03-0.06 | Bal. |
ZA6-1 | 5.6-6.0 | 1.2-1.6 | — | Bal. |
Fig. 2. SEM images of the microstructure of pure Zn and Zn alloys: (a) pure Zn, (b) ZA4-1 alloy, (c) ZA4-3 alloy, (d) ZA6-1 alloy. Matrix and second phases in images are indicated by *.
Area | Zn | Al | Cu | O |
---|---|---|---|---|
A | 17.68 | 77.13 | 5.19 | |
B | 89 | 3.39 | 3.15 | 4.46 |
C | 11.21 | 84.84 | 3.94 | |
D | 86.23 | 4.56 | 3.3 | 5.92 |
E | 70.8 | 26.21 | 2.99 | |
F | 89.53 | 2.89 | 3.55 | 4.03 |
Table 2 Chemical compositions (at.%) of areas indicated by * in Fig. 2
Area | Zn | Al | Cu | O |
---|---|---|---|---|
A | 17.68 | 77.13 | 5.19 | |
B | 89 | 3.39 | 3.15 | 4.46 |
C | 11.21 | 84.84 | 3.94 | |
D | 86.23 | 4.56 | 3.3 | 5.92 |
E | 70.8 | 26.21 | 2.99 | |
F | 89.53 | 2.89 | 3.55 | 4.03 |
Fig. 3. Mechanical properties of pure Zn and Zn alloys: (a) yield strength, ultimate tensile strength and elongation, (b) compressive yield strength and ultimate compressive strength, (c) tensile stress-stain curves, (d) compressive stress-stain curves, *p?<?0.5, compared with pure Zn.
Material | Icorr (μA cm-2) | Ecorr (V) | Corrosion rate (mm year-1) |
---|---|---|---|
Pure Zn | 1.799(0.587) | -0.958(0.074) | 0.027(0.009) |
ZA4-1 | 2.986(0.430) | -1.145(0.007) | 0.047(0.007) |
ZA4-3 | 7.209(1.451) | -1.196(0.105) | 0.374(0.431) |
ZA6-1 | 5.331(1.231) | -1.142(0.007) | 0.086(0.020) |
Table 3 Electrochemical parameters of pure Zn and Zn alloys in Hank's solution
Material | Icorr (μA cm-2) | Ecorr (V) | Corrosion rate (mm year-1) |
---|---|---|---|
Pure Zn | 1.799(0.587) | -0.958(0.074) | 0.027(0.009) |
ZA4-1 | 2.986(0.430) | -1.145(0.007) | 0.047(0.007) |
ZA4-3 | 7.209(1.451) | -1.196(0.105) | 0.374(0.431) |
ZA6-1 | 5.331(1.231) | -1.142(0.007) | 0.086(0.020) |
Fig. 9. Cell viability after culturing in extraction mediums of pure Zn and Zn alloys for 1, 2 and 4 days: (a) 100% extracts, (b) 50% extracts, *p?<?0.5, compared with pure Zn.
Material | Mg (μg/mL) | Zn (μg/mL) | Al (μg/mL) | Cu (μg/mL) |
---|---|---|---|---|
Pure Zn | 12.24 | |||
ZA4-1 | 18.42 | 9.51 | 0.050 | 0.054 |
ZA4-3 | 18.65 | 10.78 | 0.051 | 0.058 |
ZA6-1 | 18.63 | 9.52 | 0.053 | 0.062 |
Control | 18.05 | 0.067 | 0.100 | 0.041 |
Table 4 Ion concentrations of extraction mediums of pure Zn and Zn alloys
Material | Mg (μg/mL) | Zn (μg/mL) | Al (μg/mL) | Cu (μg/mL) |
---|---|---|---|---|
Pure Zn | 12.24 | |||
ZA4-1 | 18.42 | 9.51 | 0.050 | 0.054 |
ZA4-3 | 18.65 | 10.78 | 0.051 | 0.058 |
ZA6-1 | 18.63 | 9.52 | 0.053 | 0.062 |
Control | 18.05 | 0.067 | 0.100 | 0.041 |
Fig. 10. Cell cycle analysis of HUVECs cultured in extraction mediums of pure Zn and Zn alloys for 24?h: (a) control group, (b) pure Zn, (c) ZA4-1 alloy, (d) ZA4-3 alloy, (e) ZA6-1 alloy, (f) graphic representations of the cell cycle distributions of HUVECs.
Fig. 11. Fluorescent microscopic images of HUVECs after 24?h culture on the sample surfaces: (a, f) control group, (b, g) pure Zn, (c, h) ZA4-1 alloy, (d, i) ZA4-3 alloy, (e, j) ZA6-1 alloy. Actin and nuclei are in green and blue, respectively.
|
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[4] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[5] | S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases [J]. J. Mater. Sci. Technol., 2020, 45(0): 117-124. |
[6] | Zhaohui Shan, Jing Bai, Jianfeng Fan, Hongfei Wu, Hua Zhang, Qiang Zhang, Yucheng Wu, Weiguo Li, Hongbiao Dong, Bingshe Xu. Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT [J]. J. Mater. Sci. Technol., 2020, 51(0): 111-118. |
[7] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
[8] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park, Unhae Lee. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 57(0): 123-130. |
[9] | Min Jung Kim, Gyeol Chan Kang, Sung Hwan Hong, Hae Jin Park, Sang Chul Mun, Gian Song, Ki Buem Kim. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters [J]. J. Mater. Sci. Technol., 2020, 57(0): 131-137. |
[10] | Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 26-37. |
[11] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
[12] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[13] | A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity [J]. J. Mater. Sci. Technol., 2020, 36(0): 1-6. |
[14] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
[15] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||