Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 36 Issue (0): 1-6    DOI: 10.1016/j.jmst.2019.08.006
Research Article Current Issue | Archive | Adv Search |
Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity
A.V. Pozdniakov, R.Yu. Barkov*()
NUST “MISiS”, Leninskiy ave. 4, 119049, Moscow, Russia
Download:  HTML  PDF(2961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity were investigated. Eutectic Al3Y-phase particles of size 100-200 nm were detected in the as-cast microstructure of the alloys. Al3Y-phase particles provided a higher hardness to as cast alloys than homogenized alloys in the temperature range of 370-440 °C. L12 precipitates of the Al3(ScxYy) phase were nucleated homogenously within the aluminium matrix and heterogeneously on the dislocations during annealing at 400 °C. The average size of the L12 precipitates was 11±2 nm after annealing for 1 h, and 25-30 nm after annealing for 5 h, which led to a decrease in the hardness of the Al-0.2Y-0.2Sc alloy to 15 HV. The recrystallization temperature exceeded 350 °C and 450 °C for the Al-0.2Y-0.05Sc and Al-0.2Y-0.2Sc alloys, respectively. The investigated alloys demonstrated good thermal stability of the hardness and tensile properties after annealing the rolled alloys at 200 and 300 °C, due to fixing of the dislocations and grain boundaries by L12 precipitates and eutectic Al3Y-phase particles. The good combination of strength, plasticity, and electrical conductivity of the investigated Al-0.2Y-0.2Sc alloys make it a promising candidate for electrical conductors. The alloys exhibited a yield stress of 177-183 MPa, ultimate tensile stress of 199-202 MPa, elongation of 15.2-15.8%, and electrical conductivity of 60.8%-61.5% IACS.

Key words:  Aluminium alloys      Scandium      Yttrium      Recrystallization      Mechanical properties      Electrical conductivity     
Received:  11 February 2019     
Corresponding Authors:  Barkov R.Yu.     E-mail:  barkov@misis.ru

Cite this article: 

A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity. J. Mater. Sci. Technol., 2020, 36(0): 1-6.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.08.006     OR     https://www.jmst.org/EN/Y2020/V36/I0/1

Fig. 1.  Calculated liquidus projection and calculated isothermal section of the Al-Sc-Y system at 873 K (600 °C) [18].
Fig. 2.  Microstructures of the AlYSc005 (a, c) and AlYSc02 (b, d) alloys in (a, b) as-cast state and (c, d) as-quenched state and distribution of alloying elements between phases, represented by white rectangular boxes in (a) and (b).
Fig. 3.  DSC curves of the AlYSc005 (a) and AlYSc02 (b) alloys.
Fig. 4.  Hardness curves after annealing the as-cast and heat-treated (HT) AlYSc005 and AlYSc02 alloys at 370 °C (a), 400 °C (b) and 440 °C (c).
Fig. 5.  TEM images of the AlYSc02 alloy after annealing the as-cast ingots at 400 °C for 1 h (a-c) and 5 h (d-f): (a, d) bright-field images; (b, e) dark-field images; (с, f) SAED patterns [111].
Fig. 6.  TEM images of the AlYSc02 alloy after annealing the homogenized ingots at 400 °C for 1 h (a-c) and 5 h (d-f): (a, d) bright-field images; (b, e) dark-field images; (с, f) SAED patterns [110].
Fig. 7.  Hardness curves of the annealed AlYSc005 after rolling (a) and AlYSc02 (b) alloys: (a, b) temperature dependencies after annealing for 1 h; (c) time dependencies (the insets show the microstructures of the annealed samples after, acquired by LM under polarized light after anodizing).
Condition AlYSc005 AlYSc02
YS (MPa) UTS (MPa) Elongation (%) YS (MPа) UTS (MPа) Elongation (%)
As-deformed 146 ± 1 156 ± 2 10.2 ± 0.4 186 ± 2 201 ± 1 11.8 ± 0.2
Annealed at 200 °C for 1 h 136 ± 2 148 ± 3 10.4 ± 0.3 178 ± 1 198 ± 1 10.7 ± 0.8
Annealed at 200 °C for 5 h 132 ± 2 144 ± 2 12.6 ± 0.2 174 ± 1 194 ± 1 12.2 ± 0.4
Annealed at 200 °C for 7 h 133 ± 2 145 ± 1 12.2 ± 0.8 178 ± 1 200 ± 1 15.1 ± 0.8
Annealed at 300 °C for 1 h 128 ± 3 137 ± 3 12.3 ± 0.7 179 ± 2 200 ± 2 16.5 ± 0.5
Annealed at 300 °C for 5 h 129 ± 4 140 ± 3 17.1 ± 0.8 177 ± 2 199 ± 3 15.2 ± 0.4
Annealed at 300 °C for 7 h 127 ± 4 138 ± 5 16.2 ± 0.2 183 ± 3 202 ± 2 15.8 ± 0.3
Table 1  Tensile tests results for the studied alloys (UTS: ultimate tensile strength).
Fig. 8.  Typical tensile stress-strain curves of the investigated alloys.
Condition IACS (%)
AlYSc005 AlYSc02 Al (99.99%) [21] 1350 alloy [21]
As deformed 59.9 59.3 64.5 61
Annealed at 200 °C for 1 h 60.8 60.2
Annealed at 200 °C for 5 h 60.8 60.2
Annealed at 200 °C for 7 h 60.8 60.5
Annealed at 300 °C for 1 h 60.9 60.8
Annealed at 300 °C for 5 h 61.7 61.5
Annealed at 300 °C for 7 h 62.4 61.5
Table 2  Electrical conductivity of the studied alloys vs. pure Al and 1350 alloy.
[1] V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A 280 (2000) 30-36.
[2] N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskii, J.Mater. Sci. 41 (2006) 5890-5899.
[3] Y.A. Filatov, V.I. Yelagin, V.V. Zakharov, Mater. Sci. Eng. A 280 (2000) 97-101.
[4] O. Roder, T. Wirtz, A. Gysler, G. Lutjering, Mater. Sci. Eng.234-236(1997) 181-184.
[5] J. Taendl, A. Orthacker, H. Amenitsch, G. Kothleitner, C. Poletti, Acta Mater. 117(2016) 43-50.
[6] S. Costa, H. Puga, J. Barbosa, A.M.P. Pinto, Mater. Des. 42(2012) 347-352.
[7] M.J. Jones, F.J. Humphreys, Acta Mater. 51(2003) 2149-2159.
[8] R. Guan, Y. Shen, Z. Zhao, X. Wang, J. Mater. Sci. Technol. 33(2017) 215-223.
[9] L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol. 35(2018) 962-971.
[10] Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, W. You, Mater. Charact. 86(2013) 1-8.
[11] Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, B. Sun, Mater. Sci. Eng. A 616 (2014) 132-140.
[12] H. Gao, W. Feng, Y. Wang, Mater. Charact. 121(2016) 195-198.
[13] H. Gao, W. Feng, J. Gu, J. Wang, B. Sun, J. Alloys Compd. 696(2017) 1039-1045.
[14] A.V. Pozdniakov, A.A. Aytmagambetov, S.V. Makhov, V.I. Napalkov, Phys. Met. Metall. 118(2017) 479-484.
[15] A.V. Pozdnyakov, A.A. Osipenkova, D.A. Popov, S.V. Makhov, V.I. Napalkov, Met. Sci. Heat Treat. 58(2017) 537-542.
[16] F. Cao, X. Zhu, S. Wang, Lu Shi, G. Xu, J. Wen, Mater. Sci. Eng. A 690 (2017) 433-445.
[17] R.Y. Barkov, A.V. Pozdniakov, E. Tkachuk, V.S. Zolotorevskiy, Mater. Lett. 217 (2018) 135-138.
[18] J.L. Hua, H. Bob, L.B. Liu, Z.P. Jin, Thermochim. Acta 661 (2018) 147-159.
[19] R.W. Hyland, Metall. Trans. A 23 (1992) 1947.
[20] S. Iwamura, Y. Miura, Acta Mater. 52(2004) 591-600.
[21] ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2, The Materials Information Company, 2010.
[1] Jongbin Go, Jong Un Lee, Hui Yu, Sung Hyuk Park. Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg[J]. 材料科学与技术, 2020, 44(0): 62-75.
[2] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[3] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[4] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[5] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[6] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[7] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[8] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[9] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[10] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[11] Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys[J]. 材料科学与技术, 2020, 40(0): 54-63.
[12] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[13] Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits[J]. 材料科学与技术, 2020, 40(0): 185-195.
[14] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[15] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.