|
|
Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity |
A.V. Pozdniakov, R.Yu. Barkov*( ) |
NUST “MISiS”, Leninskiy ave. 4, 119049, Moscow, Russia |
|
|
Abstract The microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity were investigated. Eutectic Al3Y-phase particles of size 100-200 nm were detected in the as-cast microstructure of the alloys. Al3Y-phase particles provided a higher hardness to as cast alloys than homogenized alloys in the temperature range of 370-440 °C. L12 precipitates of the Al3(ScxYy) phase were nucleated homogenously within the aluminium matrix and heterogeneously on the dislocations during annealing at 400 °C. The average size of the L12 precipitates was 11±2 nm after annealing for 1 h, and 25-30 nm after annealing for 5 h, which led to a decrease in the hardness of the Al-0.2Y-0.2Sc alloy to 15 HV. The recrystallization temperature exceeded 350 °C and 450 °C for the Al-0.2Y-0.05Sc and Al-0.2Y-0.2Sc alloys, respectively. The investigated alloys demonstrated good thermal stability of the hardness and tensile properties after annealing the rolled alloys at 200 and 300 °C, due to fixing of the dislocations and grain boundaries by L12 precipitates and eutectic Al3Y-phase particles. The good combination of strength, plasticity, and electrical conductivity of the investigated Al-0.2Y-0.2Sc alloys make it a promising candidate for electrical conductors. The alloys exhibited a yield stress of 177-183 MPa, ultimate tensile stress of 199-202 MPa, elongation of 15.2-15.8%, and electrical conductivity of 60.8%-61.5% IACS.
|
Received: 11 February 2019
|
Corresponding Authors:
Barkov R.Yu.
E-mail: barkov@misis.ru
|
[1] | V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A 280 (2000) 30-36. | [2] | N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskii, J.Mater. Sci. 41 (2006) 5890-5899. | [3] | Y.A. Filatov, V.I. Yelagin, V.V. Zakharov, Mater. Sci. Eng. A 280 (2000) 97-101. | [4] | O. Roder, T. Wirtz, A. Gysler, G. Lutjering, Mater. Sci. Eng.234-236(1997) 181-184. | [5] | J. Taendl, A. Orthacker, H. Amenitsch, G. Kothleitner, C. Poletti, Acta Mater. 117(2016) 43-50. | [6] | S. Costa, H. Puga, J. Barbosa, A.M.P. Pinto, Mater. Des. 42(2012) 347-352. | [7] | M.J. Jones, F.J. Humphreys, Acta Mater. 51(2003) 2149-2159. | [8] | R. Guan, Y. Shen, Z. Zhao, X. Wang, J. Mater. Sci. Technol. 33(2017) 215-223. | [9] | L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol. 35(2018) 962-971. | [10] | Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, W. You, Mater. Charact. 86(2013) 1-8. | [11] | Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, B. Sun, Mater. Sci. Eng. A 616 (2014) 132-140. | [12] | H. Gao, W. Feng, Y. Wang, Mater. Charact. 121(2016) 195-198. | [13] | H. Gao, W. Feng, J. Gu, J. Wang, B. Sun, J. Alloys Compd. 696(2017) 1039-1045. | [14] | A.V. Pozdniakov, A.A. Aytmagambetov, S.V. Makhov, V.I. Napalkov, Phys. Met. Metall. 118(2017) 479-484. | [15] | A.V. Pozdnyakov, A.A. Osipenkova, D.A. Popov, S.V. Makhov, V.I. Napalkov, Met. Sci. Heat Treat. 58(2017) 537-542. | [16] | F. Cao, X. Zhu, S. Wang, Lu Shi, G. Xu, J. Wen, Mater. Sci. Eng. A 690 (2017) 433-445. | [17] | R.Y. Barkov, A.V. Pozdniakov, E. Tkachuk, V.S. Zolotorevskiy, Mater. Lett. 217 (2018) 135-138. | [18] | J.L. Hua, H. Bob, L.B. Liu, Z.P. Jin, Thermochim. Acta 661 (2018) 147-159. | [19] | R.W. Hyland, Metall. Trans. A 23 (1992) 1947. | [20] | S. Iwamura, Y. Miura, Acta Mater. 52(2004) 591-600. | [21] | ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2, The Materials Information Company, 2010. |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|