Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 36 Issue (0): 45-49    DOI: 10.1016/j.jmst.2019.06.013
Research Article Current Issue | Archive | Adv Search |
Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading
Maryam Jamalian*(), David P.Field
School of Mechanical and Materials Engineering, Washington State University, Pullman, USA
Download:  HTML  PDF(2326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Subjecting a workpiece to a surface treatment with severe impact loading is a novel severe plastic deformation procedure to fabricate gradient microstructures through the thickness and longitudinal direction. Mechanical performance is a function of twin density and the newly-formed grain size gradients. {10$\bar{1}$2} tensile twins created from processing without excessive grain refinement lead to strength enhancement with retained ductility. Creation of residual strain by a single impact results in a significant reduction in time and cost of the process. This paper investigates the effect of applying severe impact loading on mechanical and microstructural properties of magnesium for various impact velocities.

Key words:  Surface modification      Twinning      Magnesium alloys      Mechanical properties      Severe impact loading (SIL)     
Received:  23 April 2019     
Corresponding Authors:  Jamalian Maryam     E-mail:  maryam.jamalian@wsu.edu

Cite this article: 

Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading. J. Mater. Sci. Technol., 2020, 36(0): 45-49.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.06.013     OR     https://www.jmst.org/EN/Y2020/V36/I0/45

Fig. 1.  Schematic of the SIL process: (a) second impact in distance of 2 mm; (b) procedure is repeated for another side of the sample (rotated 180° w.r.t. RD).
Fig. 2.  Morphologies of affected area: (a) polished surface before SIL; (b) one impact, IV = 1 m/s; (c) one impact, IV = 1.5 m/s; (d) after SIL procedure, both sides of the sample treated with IV = 1.5 m/s and step distance is 2 mm.
Fig. 3.  Optical images through thickness: (a) as-received; (b) after SIL procedure. Both sides of the sample treated with IV = 1.5 m/s; (c) after SIL procedure. Both sides of the sample treated with IV = 3 m/s. Orientation map and boundaries after SIL procedure with IV = 3 m/s; (d) from the center of the gradient structure; (e) near the edge of the sample.
Fig. 4.  Tensile behavior of AZ31 after SIL procedure.
Position As-received IV = 1.5 m/s IV = 3 m/s
Center 48.1±1.42 63.8±2.72 82.1±5.33
Edge 62.3±1.77 79.5±3.85 98.9±1.46
Table 1  Vickers hardness at center and edge (IV: impact velocity).
Fig. 5.  Fracture surfaces of treated sample with IV = 1.5 m/s: (a) normal plane; (b) transverse plane; (c) rolling plane.
Fig. 6.  (a) Schematic of gradient microstructure before SIL process and the corresponding (b) boundaries map, (c) image quality map and (d) KAM map; (e) boundaries map, (f) image quality map and (g) KAM map after SIL treatment both sides with IV = 1.5 m/s.
[1] X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Nat. Acad. Sci. 111 (2014) 7197-7201.
[2] T. Fang, W. Li, N. Tao, K. Lu, Science 331 (2011) 1587-1590.
[3] X. Zhao, G. Xue, Y. Liu, Results Phys. 7 (2017) 1845-1851.
[4] A. Amanov, O.V. Penkov, Y.S. Pyun, D.E. Kim, Tribol. Int. 54 (2012) 106-113.
[5] X. Wang, Y. Li, Q. Zhang, Y. Zhao, Y. Zhu, J. Mater. Sci. Technol. 33 (2017) 758-761.
[6] X. Wu, P. Jiang, L. Chen, J. Zhang, F. Yuan, Y. Zhu, Mater. Res. Lett. 2 (2014) 185-191.
[7] X. An, C. Rodopoulos, E. Statnikov, V. Vitazev, O. Korolkov, J. Mater. Eng. Perform. 15 (2006) 355-364.
[8] X. Zhao, B. Zhao, Y. Liu, Y. Cai, C. Hu, Eng. Fail. Anal. 83 (2018) 167-177.
[9] Z. Wang, Z. Xiao, C. Huang, L. Wen, W. Zhang, Materials 10 (2017) 1203.
[10] W. Kim, M. Lee, B. Lee, Y. Park, Mater. Lett. 64 (2010) 647-649.
[11] S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 578 (2013) 271-276.
[12] H. Zhang, M. Yang, M. Hou, L. Wang, Q. Zhang, J. Fan, W. Li, H. Dong, S. Liu, B. Xu, Mater. Sci. Eng. A 744 (2019) 456-470.
[13] S. Bagherifard, D.J. Hickey, S. Fintova′, F. Pastorek, I. Fernandez-Pariente, M. Bandini, T.J. Webster, M. Guagliano, Acta Biomater. 66 (2018) 93-108.
[14] M. Jamalian, D.P. Field, Mater. Charact. 148 (2019) 9-16.
[15] B.N. Mordyuk, G.I. Prokopenko, J. Sound Vibr. 308 (2007) 855-866.
[16] S. Sathyajith, S. Kalainathan, Opt. Lasers Eng. 50 (2012) 345-348.
[17] X. Meng, M. Duan, L. Luo, D. Zhan, B. Jin, Y. Jin, X.X. Rao, Y. Liu, J. Lu, Mater. Sci. Eng. A 707 (2017) 636-646.
[18] M. Laleh, F. Kargar, J. Alloys Compd. 509 (2011) 9150-9156.
[19] T. Mayama, K. Aizawa, Y. Tadano, M. Kuroda, Comput. Mater. Sci. 47 (2009) 448-455.
[20] M. Novelli, P. Bocher, T. Grosdidier, Mater. Charact. 139 (2018) 197-207.
[21] X. Yang, J. Zhou, X. Ling, Mater. Des. 36 (2012) 477-481.
[22] K.S. Fong, M.J. Tan, F.L. Ng, A. Danno, B.W. Chua, J. Manuf. Sci. Eng. 139 (2017), 081007.
[23] M. Janecek, R. Kral, P. Dobron, F. Chmelik, V. Supik, F. Hollander, Mater. Sci. Eng. A 462 (2007) 311-315.
[24] M. Jamalian, V. Joshi, S. Whalen, C. Lavender, D. Field, Field, Microstructure and texture evolution of magnesium alloy after shear assisted processing and extrusion (shapetm), IOP Conference Series: Materials Science and Engineering Vol. 375 (2018), p. 012007.
[25] H. Watari, K. Davey, M. Rasgado, T. Haga, S. Izawa, J. Mater. Proc. Technol. 155 (2004) 1662-1667.
[26] A. Ghaderi, M.R. Barnett, Acta Mater. 59 (2011) 7824-7839.
[27] L. Wu, S. Agnew, Y. Ren, D. Brown, B. Clausen, G. Stoica, H. Wenk, P. Liaw, Mater. Sci. Eng. A 527 (2010) 7057-7067.
[28] Y. Xin, M. Wang, Z. Zeng, M. Nie, Q. Liu, Scr. Mater. 66 (2012) 25-28.
[29] S.R. Agnew, O. Duygulu, Int. J. Plast. 21 (2005) 1161-1193.
[30] X. Lou, M. Li, R. Boger, S. Agnew, R. Wagoner, Int. J. Plast. 23 (2007) 44-86.
[31] E. Knauer, J. Freudenberger, T. Marr, A. Kauffmann, L. Schultz, Metals 3 (2013) 283-297.
[32] C. Yang, H. Liu, B. Yang, B. Shi, Y. Peng, F. Pan, L. Wu, Mater. Sci. Eng. A 743 (2019) 391-396.
[33] D.A. Basha, H. Somekawa, A. Singh, Scr. Mater. 142 (2018) 50-54.
[34] H. El Kadiri, J. Kapil, A. Oppedal, L. Hector Jr, S.R. Agnew, M. Cherkaoui, S. Vogel, Acta Mater. 61 (2013) 3549-3563.
[35] J. Young, G. Ayoub, B. Mansoor, D. Field, J. Mater. Proc. Technol. 216 (2015) 315-327.
[1] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[2] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[3] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[4] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[5] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[6] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[7] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[8] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[9] Fenghua Wang, Miaolin Feng, Yanyao Jiang, Jie Dong, Zhenyan Zhang. Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy[J]. 材料科学与技术, 2020, 39(0): 74-81.
[10] R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint[J]. 材料科学与技术, 2020, 42(0): 220-228.
[11] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[12] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[13] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[14] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[15] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.