Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 38 Issue (0): 39-46    DOI: 10.1016/j.jmst.2019.06.025
Research Article Current Issue | Archive | Adv Search |
Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration
Qiuyan Huanga, Yang Liua, Aiyue Zhangbc, Haoxin Jiangbc, Hucheng Panbc*(), Xiaohui Fenga, Changlin Yangd, Tianjiao Luoa, Yingju Lia, Yuansheng Yanga**()
aInstitute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
bKey Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
cResearch Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
dState Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
Download:  HTML  PDF(3708KB) 
Export:  BibTeX | EndNote (RIS)      

This article aims to explore the age hardening responses of both as-extruded and as-aged Mg-2.5Sn-1.5Ca-xAl alloys (x = 2.0, 4.0 and 9.0 wt%, termed TXA322, TXA324 and TXA329, respectively) through microstructural and mechanical characterization. Results indicate that grain size of as-extruded TXA322, TXA324 and TXA329 alloys were ~ 16 μm, ~ 10 μm and ~ 12 μm, respectively. A number of <a> and <c+a> dislocations were observed in all the as-extruded samples. Guinier - Preston (GP) zones were evidently identified in TXA322 alloy, while only a small number of Mg17Al12 phases existed in both TXA324 and TXA329 alloys. An aging treatment facilitated the precipitation of a high number density of GP zones within the matrix of TXA322 alloy. In contrast, no obvious nano-precipitates were in as-aged TXA324 alloy. Numerous nano-Mg17Al12 phases were formed through a following aging treatment in TXA329 alloy. In terms of mechanical properties, it is apparent that an increment in ultimate tensile strength of ~ 46 MPa and ~ 40 MPa was yielded in peak-aged TXA322 and TXA329 alloys, while no obvious variations in UTS were present in peak-aged TXA324 alloy, in comparison with the as-extruded counterparts.

Key words:  Magnesium alloys      Age hardening      Precipitations      Dislocations      Mechanical properties     
Received:  15 March 2019     
Corresponding Authors:  Pan Hucheng,Yang Yuansheng     E-mail:;

Cite this article: 

Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration. J. Mater. Sci. Technol., 2020, 38(0): 39-46.

URL:     OR

Fig. 1.  (a) Optical image, (b) SEM image and (c) the corresponding EDS results for the as-extruded TXA322 alloy, including (d) the XRD result. The (0002) X-ray pole figure of as-extruded TXA322 alloy can be found in inset image of Fig. 1(a).
Fig. 2.  Optical and SEM image of the as-extruded (a, c) TXA324 and (b, d) TXA329 alloys, with the corresponding pole figures inserted in the Fig. 2(a) and Fig. 2(b).
Fig. 3.  XRD patterns of the as-extruded TXA324 and TXA329 alloys.
Fig. 4.  TEM images of the as-extruded TXA322 alloy under the two-beam condition of g=<0001> (a, b) and g=<10-10> (c) and SADPs and EDS results for the phase 1# existed in the Fig. 4(b) (d).
Fig. 5.  TEM images of the as-extruded (a, b) TXA324 and (c, d) TXA329 alloys.
Fig. 6.  Age-hardening response of as-extruded TXA322, TXA324 and TXA329 alloys.
Fig. 7.  TEM images of the as-aged TXA322 alloys, including the precipitations of GP zones along and nearby the dislocation lines.
Fig. 8.  TEM images of the as-aged TXA329 alloys.
Sample As-extruded Aged
σs (MPa) σb (MPa) δ (%) σs (MPa) σb (MPa) δ (%)
TXA322 130 ± 5 248 ± 5 12.5 ± 2 155 ± 4 294 ± 7 9.2 ± 1
TXA324 136 ± 7 252 ± 3 11.4 ± 3 140 ± 6 254 ± 2 9.6 ± 3
TXA329 157 ± 4 269 ± 6 9.8 ± 2 230 ± 6 309 ± 5 7.5 ± 2
Table 1  Mechanical properties of the TXA322, TXA324 and TXA329 alloys.
[1] G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Nature 545 (2017) 80-83.
[2] H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, Q. Peng, Nano Lett. 17 (2017) 6117-6241.
[3] X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245-247.
[4] P. Poddar, A. Kamaraj, A.P. Murugesan, S. Bagui, K.L. Sahoo, J. Magnes. Alloys 5 (2017) 348-354.
[5] Z. Yu, C. Xu, J. Meng, S. Kamado, Mater. Sci. Eng. A 703 (2017) 348-358.
[6] J. Zhang, S. Liu, R. Wu, L. Hou, M. Zhang, J. Magnes. Alloys 6 (2018) 277-291.
[7] J. Wang, R. Liu, T. Luo, Y. Yan, Mater. Des. 47 (2013) 746-749.
[8] Y. Zhang, T. Alam, B. Gwalani, W. Rong, R. Banerjee, L.M. Peng, J.F. Nie, N. Birbilis, Philos. Mag. Lett. 96 (2016) 212-219.
[9] W. Rong, Y. Wu, Y. Zhang, M. Sun, J. Chen, L. Peng, W. Ding, Mater. Charact. 126 (2017) 1-9.
[10] Y. Yuan, A. Ma, J. Jiang, F. Lu, W. Jian, D. Song, Y.T. Zhu, Mater. Sci. Eng. A 588 (2013) 329-334.
[11] A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang, Y. Nishida, Mater. Sci. Eng.A 513-514 (2009) 122-127.
[12] A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res. 16 (2001) 1894-1900.
[13] Q. Wang, J. Chen, Z. Zhao, S. He, Mater. Sci. Eng. A 528 (2010) 323-328.
[14] T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61 (2009) 644-647.
[15] Z. Yu, C. Xu, J. Meng, X. Zhang, S. Kamado, J. Alloys Compd. 729 (2017) 627-637.
[16] S. You, Y. Huang, K.U. Kainer, N. Hort, J. Magnes. Alloys 5 (2017) 239-253.
[17] C. Wang, T.J. Luo, J.X. Zhou, Y.S. Yang, Mater. Sci. Eng. A 722 (2018) 14-19.
[18] S. Karparvarfard, S.B. Behravesh, H. Jahed, B.W. Williams, J. Mater. Sci. Technol. 33 (2017) 907-918.
[19] D. Ando, Y. Sutou, J. Koike, Mater. Sci. Eng. A 666 (2016) 94-99.
[20] M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, M. Knezevic, Int.J. Plast. 83 (2016) 90-109.
[21] S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, J. Yoon, S.H. Park, Mater. Sci. Eng. A 702 (2017) 1-9.
[22] S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, H. Kokawa, Mater. Sci. Eng. A 679 (2017) 272-281.
[23] P.S. Roodposhti, A. Sarkar, K.L. Murty, H. Brody, R. Scattergood, Mater. Sci. Eng. A 669 (2016) 171-177.
[24] Z. Jiang, B. Jiang, H. Yang, Q. Yang, J. Dai, F. Pan, J. Alloys Compd. 647 (2015) 357-363.
[25] H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J.F. Nie, Acta Mater. 149 (2018) 350-363.
[26] L.L. Chang, H. Tang, J. Guo, J. Alloys Compd. 703 (2017) 552-559.
[27] S.W. Xu, K. Oh-ishi, S. Kamado, F. Uchida, T. Homma, K. Hono, Scr. Mater. 65 (2011) 269-272.
[28] J. Jayaraj, C.L. Mendis, T. Ohkubo, K. Oh-ishi, K.Hono, Scr. Mater. 63 (2010) 831-834.
[29] M. Cihova, R. Schäublin, L.B. Hauser, S.S.A. Gerstl, C. Simson, P.J. Uggowitzer, J.F. Löffler, Acta Mater. 158 (2018) 214-229.
[30] H.A. Elamami, A. Incesu, K. Korgiopoulos, M. Pekguleryuz, A. Gungor, J. Alloys Compd. 764 (2018) 216-225.
[31] N. Dixit, K.Y. Xie, K.J. Hemker, K.T. Ramesh, Acta Mater. 87 (2015) 56-67.
[32] T. Nakata, C. Xu, Y. Matsumoto, K. Shimizu, T.T. Sasaki, K. Hono, S. Kamado, Mater. Sci. Eng. A 673 (2016) 443-449.
[33] T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, S. Kamado, Acta Mater. 130 (2017) 261-270.
[34] F. Liu, R. Xin, C. Wang, B. Song, Q. Liu, Scr. Mater. 158 (2019) 131-135.
[35] H. Pan, G. Qin, Y. Huang, Q. Yang, Y. Ren, B. Song, L. Chai, Z. Zhao, J. Alloys Compd. 688 (2016) 149-152.
[36] H. Pan, Q. Huang, G. Qin, H. Fu, M. Xu, Y. Ren, J. She, B. Song, B. Li, J. Alloys Compd. 692 (2017) 898-902.
[37] H. Pan, H. Fu, B. Song, Y. Ren, C. Zhao, G. Qin, Philos. Mag. Lett. 96 (2016) 249-255.
[38] Q. Huang, H. Pan, A. Tang, Y. Ren, B. Song, G. Qin, M. Zhang, F. Pan, Mater. Sci. Eng. A 664 (2016) 43-48.
[39] H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloys Compd. 663 (2016) 321-331.
[40] H. Pan, C. Yang, Y. Yang, Y. Dai, D. Zhou, L. Chai, Q. Huang, Q. Yang, S. Liu, Y. Ren, G. Qin, Mater. Lett. 237 (2019) 65-68.
[41] H. Huang, H. Miao, G. Yuan, Z. Wang, W. Ding, J. Magnes. Alloys 6 (2018) 107-113.
[42] X. Zheng, J. Dong, S. Wang, J. Magnes. Alloys 6 (2018) 95-99.
[43] J.L. Li, D. Wu, R.S. Chen, E.H. Han, Acta Mater. 159 (2018) 31-45.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[3] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[4] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[5] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[6] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[7] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[8] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[9] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[10] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[11] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[12] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[13] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[14] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[15] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.