J Mater Sci Technol ›› 2009, Vol. 25 ›› Issue (01): 63-68.

• Letters • Previous Articles     Next Articles

Combination of Instrumented Nanoindentation and Scanning Probe Microscopy for Adequate Mechanical Surface Testing

Enrico Tam1)†, Mikhail Petrzhik2), Dmitry Shtansky2) and Marie-Paule Delplancke-Ogletree1)   

  1. 1) Université Libre de Bruxelles, Brussels 1050, Belgium
    2) Moscow State Institute of Steel and Alloys, Moscow 119049, Russia
  • Received:2007-12-12 Online:2009-01-28 Published:2009-10-10
  • Contact: Enrico Tam

Abstract:

The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were deter- mined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measure- ments with different loading/unloading schemes on chemically polished bulk titanium a substantial decrease of both modulus and hardness vs an increasing loading time was found. Then, hard nanostructured TiBN and TiCrBN thin films deposited by magnetron sputtering (using multiphase targets) on substrates of high roughness (sintered hard metal) and low roughness (silicon) were studied. Experimental modulus and hardness characterized by using two different nanoindenter tools were within the limits of standard deviation. However, a strong effect of roughness on the spread of the experimental values was observed and it was found that hard- ness and elastic indentation modulus obeyed a Gaussian distribution. The experimental data were discussed together with scanning probe microscopy (SPM) images of typical imprints taken after the nanoindentation tests and the local topography´s strong correlation with the results of nanoindentation was described.

Key words: Nanoindentation, Thin films, Coatings, Scanning probe microscopy