J. Mater. Sci. Technol. ›› 2023, Vol. 132: 69-80.DOI: 10.1016/j.jmst.2022.04.054
• Research Article • Previous Articles Next Articles
Bo Menga, Jinlong Wanga,*(
), Lanlan Yangb, Minghui Chena, Shenglong Zhua,c, Fuhui Wanga,c
Received:2021-12-23
Revised:2022-03-13
Accepted:2022-04-12
Published:2023-01-01
Online:2022-06-15
Contact:
Jinlong Wang
About author:* E-mail addresses: wangjinlong@mail.neu.edu.cn (J. Wang).Bo Meng, Jinlong Wang, Lanlan Yang, Minghui Chen, Shenglong Zhu, Fuhui Wang. On the rumpling mechanism in nanocrystalline coatings: Improved by reactive magnetron sputtering with oxygen[J]. J. Mater. Sci. Technol., 2023, 132: 69-80.
| Elements | O | Al | Cr | Ta | W | Mo | Re | Co | Ni |
|---|---|---|---|---|---|---|---|---|---|
| Nominal N5 | - | 6.2 | 7.0 | 6.5 | 5.0 | 1.5 | 3.0 | 7.5 | Bal. |
| Point 1 | - | 6.2 | 7.9 | 5.3 | 4.8 | 1.5 | 2.5 | 9.1 | Bal. |
| Point 2 | 0.5 | 5.2 | 7.8 | 6.3 | 5.5 | 2.1 | 3.7 | 9.1 | Bal. |
| Point 3 | - | 6.1 | 8.5 | 5.2 | 4.4 | 1.4 | 2.5 | 9.2 | Bal. |
Table 1. EPMA-detected compositions for alloy substrate and nanocrystalline coatings (wt.%).
| Elements | O | Al | Cr | Ta | W | Mo | Re | Co | Ni |
|---|---|---|---|---|---|---|---|---|---|
| Nominal N5 | - | 6.2 | 7.0 | 6.5 | 5.0 | 1.5 | 3.0 | 7.5 | Bal. |
| Point 1 | - | 6.2 | 7.9 | 5.3 | 4.8 | 1.5 | 2.5 | 9.1 | Bal. |
| Point 2 | 0.5 | 5.2 | 7.8 | 6.3 | 5.5 | 2.1 | 3.7 | 9.1 | Bal. |
| Point 3 | - | 6.1 | 8.5 | 5.2 | 4.4 | 1.4 | 2.5 | 9.2 | Bal. |
Fig. 1. Typical microstructures of the as-deposited SN coating: (a) fractured morphology; (b) cross-sectional morphology by SEM; (c) the cross-sectional and (d) plan-view morphologies by TEM bright field; and (e) the corresponding SAED patterns.
Fig. 2. Typical microstructures of the as-deposited SNO coating: (a) fractured morphology; (b) cross-sectional morphology; (c) the cross-sectional and (d) plan-view morphologies by TEM bright field; and (e) the corresponding SAED patterns.
| Ring No. | dhkl (nm) ( | Z (γ-Ni) | dhkl (nm) ( | Z (γ-Ni) |
|---|---|---|---|---|
| 1 | 0.2169 | [111] | 0.2135 | [111] |
| 2 | 0.1895 | [200] | 0.1893 | [200] |
| 3 | 0.1326 | [220] | 0.1315 | [220] |
| 4 | 0.1118 | [311] | 0.1123 | [311] |
| 5 | - | - | 0.1076 | [222] |
| 6 | 0.0855 | [331] | 0.0845 | [331] |
Table 2. Theoretical and experimental values for dhkl of phases of the nanocrystalline coatings.
| Ring No. | dhkl (nm) ( | Z (γ-Ni) | dhkl (nm) ( | Z (γ-Ni) |
|---|---|---|---|---|
| 1 | 0.2169 | [111] | 0.2135 | [111] |
| 2 | 0.1895 | [200] | 0.1893 | [200] |
| 3 | 0.1326 | [220] | 0.1315 | [220] |
| 4 | 0.1118 | [311] | 0.1123 | [311] |
| 5 | - | - | 0.1076 | [222] |
| 6 | 0.0855 | [331] | 0.0845 | [331] |
Fig. 3. (a) Oxidation kinetics of the SN and SNO coatings during cyclic oxidation test at 1100 °C; (b) XRD patterns of the coatings after cyclic oxidation at 1100 °C.
Fig. 4. Surface and cross-sectional morphologies of the oxide scales formed on the nanocrystalline coatings at 1100 °C: surface (a) and cross-sectional (b) morphologies of SN coating after 100 cycles; surface (c) and cross-sectional (d) morphologies of SNO coating after 100 cycles; surface (e) and cross-sectional (f) morphologies of SN coating after 500 cycles; surface (g) and cross-sectional (h) morphologies of SNO coating after 500 cycles.
| Elements | O | Al | Ta | Other | |
|---|---|---|---|---|---|
| SN | 1 | 35.0 | 42.4 | 5.4 | Bal. |
| 2 | 39.9 | 34.8 | 16.4 | Bal. | |
| 3 | 37.1 | 31.8 | 2.3 | Bal. | |
| SNO | 4 | 38.4 | 38.2 | - | Bal. |
| 5 | 14.3 | 11.7 | 35.1 | Bal. | |
Table 3. EDS-detected compositions for nanocrystalline coatings after 100 cycles (wt.%).
| Elements | O | Al | Ta | Other | |
|---|---|---|---|---|---|
| SN | 1 | 35.0 | 42.4 | 5.4 | Bal. |
| 2 | 39.9 | 34.8 | 16.4 | Bal. | |
| 3 | 37.1 | 31.8 | 2.3 | Bal. | |
| SNO | 4 | 38.4 | 38.2 | - | Bal. |
| 5 | 14.3 | 11.7 | 35.1 | Bal. | |
Fig. 6. Cross-sectional microstructures of the SN (a) and SNO (b) coatings etched after 100 cycles oxidation at 1100 °C; (c) Ni-Cr-Al phase diagram [44] at 1100 °C showing the degradation of the coatings during cyclic oxidation; (d) volume fraction distribution of γ phase variation along with coating depth in (b).
Fig. 8. A modified version of the strain diagram, shown in Ref. [16], for the case when the bond coating is the sputtered nanocrystalline coatings. The evolution of the elastic strain in the nanocrystalline coatings compared with the traditional aluminide coatings along the path 1 → 2 → 3 → 4 → 5 → 6→7→1′ during one thermal cycle between room temperature and Tox (1100 °C).
| [1] |
H. Lou, F. Wang, B. Xia, L. Zhang, Oxid. Met. 38 (1992) 299-307.
DOI URL |
| [2] |
J. Wang, H. Ji, M. Chen, Z. Bao, S. Zhu, F. Hui, Corros. Sci. 175 (2020) 108894.
DOI URL |
| [3] |
M.M. Xu, Y.Y. Li, C.Y. Zhang, C.Y. Jiang, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 194 (2022) 109919.
DOI URL |
| [4] |
C.Y. Zhang, Z. Ma, S.Z. Dong, M.M. Xu, S. Li, C. Zhang, C.Y. Jiang, Z.B. Bao, S. L. Zhu, F.H. Wang, Corros. Sci. 187 (2021) 109521.
DOI URL |
| [5] |
J. Wang, M. Chen, L. Yang, S. Zhu, F. Wang, Corros. Sci. 98 (2015) 530-540.
DOI URL |
| [6] |
L. Yang, M. Chen, J. Wang, S. Zhu, F. Wang, Corros. Sci. 102 (2016) 72-83.
DOI URL |
| [7] |
J. Wang, M. Chen, L. Yang, W. Sun, S. Zhu, F. Wang, Corros. Commun. 1 (2021) 58-69.
DOI URL |
| [8] |
L. Yang, M. Chen, J. Wang, Z. Bao, S. Zhu, F. Wang, Corros. Sci. 126 (2017) 344-355.
DOI URL |
| [9] |
L. Yang, M. Chen, J. Wang, Z. Bao, S. Zhu, F. Wang, Corros. Sci. 143 (2018) 136-147.
DOI URL |
| [10] |
J. Wang, M. Chen, L. Yang, L. Liu, S. Zhu, F. Wang, Appl. Surf. Sci. 366 (2016) 245-253.
DOI URL |
| [11] |
J. Wang, M. Chen, S. Zhu, F. Wang, Appl. Surf. Sci. 345 (2015) 194-203.
DOI URL |
| [12] |
P. Deb, D.H. Boone, T.F. Manley, J. Vac. Sci. Technol. A 5 (1987) 3366-3372.
DOI URL |
| [13] |
Y. Chen, X. Zhao, M. Bai, L. Yang, C. Li, L. Wang, J.A. Carr, P. Xiao, Acta Mater. 128 (2017) 31-42.
DOI URL |
| [14] |
V.K. Tolpygo, D.R. Clarke, Acta Mater. 48 (20 0 0) 3283-3293.
DOI URL |
| [15] |
V.K. Tolpygo, Surf. Coat. Technol. 202 (2007) 617-622.
DOI URL |
| [16] | V.K. Tolpygo, D.R. Clarke, Acta Mater. 52 (2004) 5115-5127. |
| [17] | V.K. Tolopygo, D.R. Clarke, Acta Mater. 52 (2004) 5129-5141. |
| [18] |
V.K. Tolopygo, D.R. Clarke, Scr. Mater. 57 (2007) 563-566.
DOI URL |
| [19] |
V.K. Tolopygo, D.R. Clarke, Surf. Coat. Technol. 203 (2009) 3278-3285.
DOI URL |
| [20] | V.K. Tolopygo, K.S. Murphy, D.R. Clark, Acta Mater. 56 (2008) 489-499. |
| [21] |
X. Zhang, Y. Zhao, P. Withers, P. Xiao, Scr. Mater. 152 (2018) 79-83.
DOI URL |
| [22] |
L. Cen, W.Y. Qin, Q.M. Yu, Ceram. Int. 45 (2019) 22802-22812.
DOI URL |
| [23] |
J. Gonzalez-Julian, T. Go, D.E. Mack, R. Vaßen, Sur. Coat. Technol. 340 (2018) 17-24.
DOI URL |
| [24] | P. Shahbeigi-Roodposhti, E. Jordan, S. Shahbazmohamadi, J. Therm. Spray Tech- nol. 26 (2017) 1776-1786. |
| [25] |
C. Li, X. Chen, D. Wu, Y. Zhu, H. Qin, J. Sadowski, G. Zhou, Acta Mater. 201 (2020) 244-253.
DOI URL |
| [26] |
V.A. Esin, V. Maurel, P. Breton, A. Köster, S. Selezneff, Acta Mater. 105 (2016) 505-518.
DOI URL |
| [27] |
H. Guo, D. Li, L. Zheng, S. Gong, H. Xu, Corros. Sci. 88 (2014) 197-208.
DOI URL |
| [28] |
H. Guo, D. Wang, H. Peng, S. Gong, H. Xu, Corros. Sci. 78 (2014) 369-377.
DOI URL |
| [29] |
Y.F. Yang, C.Y. Jiang, H.R. Yao, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 111 (2016) 162-174.
DOI URL |
| [30] | N. Dupin, I. Ansara, B. Sundman, Calphad 25 (2001) 279-298. |
| [31] |
Z. Zhen, X. Wang, Z. Shen, R. Mu, L. He, Z. Xu, Ceram. Int. 47 (2021) 23101-23109.
DOI URL |
| [32] |
S. Li, M.M. Xu, C.Y. Zhang, Y.S. Niu, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 178 (2021) 109093.
DOI URL |
| [33] |
M.A. González, D.I. Martínez, C.T. Saucedo, I. Guzman, J.M. Rodriguez, Eng. Fail. Anal. 29 (2013) 122-131.
DOI URL |
| [34] |
C. Jiang, L. Qian, M. Feng, H. Liu, Z. Bao, M. Chen, S. Zhu, F. Wang, J. Mater. Sci. Technol. 35 (2019) 1334-1344.
DOI URL |
| [35] |
D. Pan, M.W. Chen, P.K. Wright, K.J. Hemker, Acta Mater. 51 (2003) 2205-2217.
DOI URL |
| [36] |
L. Yang, J. Wang, R. Yang, S. Yang, Y. Jian, M. Chen, Corros. Sci. 180 (2021) 109182.
DOI URL |
| [37] |
L. Yang, M. Chen, J. Wang, Y. Qiao, P. Guo, S. Zhu, F. Wang, J. Mater. Sci. Technol. 45 (2020) 49-58.
DOI URL |
| [38] | J. Wang, B. Meng, W. Sun, L. Yang, M. Chen, F. Wang, Coatings 10 (2020) 1188. |
| [39] |
W. Sun, J. Wang, L. Yang, M. Chen, Z. Bao, C. Zheng, S. Zhu, F. Wang, Corros. Sci. 161 (2019) 108187.
DOI URL |
| [40] |
J. Sun, S.M. Jiang, H.J. Yu, S.B. Liu, J. Gong, C. Sun, Corros. Sci. 139 (2018) 172-184.
DOI URL |
| [41] |
L. Qiu, F. Yang, W. Zhang, X. Zhao, P. Xiao, Corros. Sci. 89 (2014) 13-20.
DOI URL |
| [42] |
C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. Michiel, P. Xiao, R. Cernik, Acta Mater. 132 (2017) 1-12.
DOI URL |
| [43] |
S. Gao, B. He, L. Zhou, J. Hou, Corros. Sci. 170 (2020) 108682.
DOI URL |
| [44] |
H.M. Tung, J.F. Stubbins, J. Nucl. Mater. 424 (2012) 23-28.
DOI URL |
| [1] | Jin Liu, Zhiyong Du, Jinlong Su, Jie Tang, Fulin Jiang, Dingfa Fu, Jie Teng, Hui Zhang. Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy [J]. J. Mater. Sci. Technol., 2023, 132(0): 154-165. |
| [2] | Yongnan Xiong, Wangyu Hu, Yao Shu, Xing Luo, Zhibo Zhang, Jiazhen He, Cuicui Yin, Kaihong Zheng. Atomistic simulation on the generation of defects in Cu/SiC composites during cooling [J]. J. Mater. Sci. Technol., 2022, 123(0): 1-12. |
| [3] | Xuan Kong, Wenyao Sun, Qunchang Wang, Minghui Chen, Tao Zhang, Fuhui Wang. Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing [J]. J. Mater. Sci. Technol., 2022, 131(0): 253-263. |
| [4] | P. Wang, X. Liu, H. Wang, J. Cao, J. Qi, J. Feng. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti + Sc2(WO4)3 composite filler metal [J]. J. Mater. Sci. Technol., 2022, 108(0): 102-109. |
| [5] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
| [6] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
| [7] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
| [8] | Bin Zhu, Nathanael Leung, Winfried Kockelmann, Andrew J. London, Michael Gorley, Mark J. Whiting, Yiqiang Wang, Tan Sui. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging [J]. J. Mater. Sci. Technol., 2022, 114(0): 249-260. |
| [9] | J.F. Zhang, X.X. Zhang, H. Andrä, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87(0): 167-175. |
| [10] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
| [11] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
| [12] | Bo-Wen Chen, De-Wei Ni, Chun-Jing Liao, You-Lin Jiang, Jun Lu, Yu-Sheng Ding, Hong-Da Wang, Shao-Ming Dong. Chemical reactions and thermal stress induced microstructure evolution in 2D-Cf/ZrB2-SiC composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 75-82. |
| [13] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [14] | Fang Miao, Qianqian Wang, Siyi Di, Lu Yun, Jing Zhou, Baolong Shen. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation [J]. J. Mater. Sci. Technol., 2020, 53(0): 163-173. |
| [15] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
