J. Mater. Sci. Technol. ›› 2022, Vol. 123: 1-12.DOI: 10.1016/j.jmst.2021.10.058
• Research Article • Next Articles
Yongnan Xionga,b, Wangyu Huc,*(), Yao Shua,b, Xing Luoa,b, Zhibo Zhanga,b, Jiazhen Hea,b, Cuicui Yina,b, Kaihong Zhenga,b,**(
)
Received:
2021-07-20
Revised:
2021-10-11
Accepted:
2021-10-13
Published:
2022-10-01
Online:
2022-09-30
Contact:
Wangyu Hu,Kaihong Zheng
About author:
**Guangdong Academy of Sciences, Institute of New Materials, Guangzhou 510651, China.E-mail addresses: zhengkaihong@gdinm.com (K.Zheng).Yongnan Xiong, Wangyu Hu, Yao Shu, Xing Luo, Zhibo Zhang, Jiazhen He, Cuicui Yin, Kaihong Zheng. Atomistic simulation on the generation of defects in Cu/SiC composites during cooling[J]. J. Mater. Sci. Technol., 2022, 123: 1-12.
Fig. 1. Section views of the residual stress distribution inside the composite materials that cooled from (a) 1300 K, (b) 1200 K and (c) 1000 K to 300 K, while (d) shows the stress distribution of the composites at 300 K without cooling process. The SiC is marked by dashed circle.
Fig. 3. (a) A slice shows the displacement change of the atoms in composites cooled from 1300 to 300 K. (b) is an enlarged view of displacement vector of the local interface as in the dotted frame in (a). The yellow arrows in (b) indicate the changes in position for each atom with respect to its original coordinate at 1300 K, and the length of the arrow represents the magnitude of displacement.
Fig. 4. Dislocations in the composites: (a) dislocation density vs temperature during the cooling processes with different initial elevated temperatures; (b) the concentration of vacancy in matrices with different temperatures before the cooling.
Fig. 5. The evolution of dislocation line length and the proportions of the partial and stair rod dislocation vary with temperature during the cooling processes: (a, d) 1300 to 300 K, (b, e) 1200 to 300 K and (c, f) 1000 to 300 K.
Fig. 6. Dislocation networks of the composite materials at the end stages of 300 K for cooling down from (a) 1300 K, (b) 1200 K, (c) 1000 K and (d) 900 K. The central spheres are the SiC particles, and Cu atoms have been deleted.
Fig. 7. (a) Stair-rod dislocation found at the final stage in the composite model cooled from 1300 K, where (b) and (c) shows the corresponding dislocation reaction of this process. Burgers vectors are represented by the Thompson's notation.
Fig. 8. (a-c) ISFTs found with different appearances at the end stage of cooling, only atoms in the hcp environment are retained, and dislocation lines are colored as in Fig. 6. (d). An example (1000 K case) of the overall appearance of the stacking faults around the reinforcement, and Cu atoms in the fcc environment have been removed.
Fig. 9. Formation process of an ISFT in the model cooled from 1000 K. Only the atoms in hcp environment are left. Dislocation lines of Shockley partial and stair rod are colored as green and magenta, respectively.
Fig. 10. The proportions of Cu atoms in disorder (other), fcc (left vertical scale) and hcp (right vertical scale) structures vary with temperatures during the cooling processes.
Fig. 11. (a) A slice shows local structure of an ISFT. The atoms in fcc, hcp and disorder structures are colored as green, red and white, respectively. (b) The corresponding local stress distribution.
[1] |
P. Agrawal, K. Conlon, K.J. Bowman, C.T. Sun, F.R. Cichocki, K.P. Trumble, Acta Mater. 51 (2003) 1143-1156.
DOI URL |
[2] |
P.P. Parlevliet, H.E.N. Bersee, A. Beukers, Compos. Part A Appl. Sci. 37 (2006) 1847-1857.
DOI URL |
[3] |
K.K. Chawla, Philos. Mag. 28 (1973) 401-413.
DOI URL |
[4] |
R.J. Arsenault, M. Taya, Acta Metall. 35 (1987) 651-659.
DOI URL |
[5] |
J.F. Zhang, X.X. Zhang, H. Andrä, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 87 (2021) 167-175.
DOI |
[6] |
M. Krajewski, W. W ęglewski, K. Bochenek, A. Wysmołek, M. Basista, J. Appl. Phys. 125 (2019) 135104.
DOI URL |
[7] |
X. Niu, H. Zhang, Z. Pei, N. Shi, C. Sun, J. Gong, J. Mater. Sci. Technol. 35 (2019) 88-93.
DOI URL |
[8] |
T. Lee, J. Park, J. Lee, I. Jo, S. Cho, S.B. Lee, S.K. Lee, M.R. Muslih, H.J. Ryu, Funct. Compos. Struct. 1 (2019) 035002.
DOI URL |
[9] |
F. Bouafia, B. Serier, B.A.B. Bouiadjra, Comput. Mater. Sci. 54 (2012) 195-203.
DOI URL |
[10] |
X.X. Zhang, B.L. Xiao, H. Andrä, Z.Y. Ma, Compos. Struct. 137 (2016) 18-32.
DOI URL |
[11] |
J.F. Zhang, H. Andrä, X.X. Zhang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Compos. Struct. 226 (2019) 111281.
DOI URL |
[12] |
K.K. Chawla, M. Metzger, J. Mater. Sci. 7 (1972) 34-39.
DOI URL |
[13] |
R.J. Arsenault, N. Shi, Mater. Sci. Eng. 81 (1986) 175-187.
DOI URL |
[14] |
D. Dunand Dunand, Mater. Sci. Eng. A 135 (1991) 179-184.
DOI URL |
[15] |
K. Lin, S.D. Pang, Compos. B Eng. 83 (2015) 105-116.
DOI URL |
[16] |
Y.S. Suh, S.P. Joshi, K.T. Ramesh, Acta Mater. 57 (2009) 5848-5861.
DOI URL |
[17] |
D. Cao, Q. Duan, S. Li, Y. Zhong, H. Hu, Compos. Struct. 200 (2018) 290-297.
DOI URL |
[18] |
L. Jiang, H. Yang, J.K. Yee, X. Mo, T. Topping, E.J. Lavernia, J.M. Schoenung, Acta Mater. 103 (2016) 128-140.
DOI URL |
[19] |
X. He, S. Song, X. Luo, J. Liu, L. An, Y. Bai, Int. J. Mech. Sci. 184 (2020) 105831.
DOI URL |
[20] |
C.R. Dandekar, Y.C. Shin, Compos. Part A Appl. Sci. 42 (2011) 355-363.
DOI URL |
[21] |
Z. Yang, Z. Lu, Compos. B Eng. 44 (2013) 453-457.
DOI URL |
[22] |
Y. Zhou, M. Hu, Comput. Mater. Sci. 129 (2017) 129-136.
DOI URL |
[23] |
M.R. Akbarpour, H. Mousa Mirabad, S. Alipour, Ceram. Int. 45 (2019) 3276-3283.
DOI |
[24] |
A.S. Prosviryakov, J. Alloy. Compd. 632 (2015) 707-710.
DOI URL |
[25] |
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63 (2001) 224106.
DOI URL |
[26] |
X.S. Yang, Y.J. Wang, G.Y. Wang, H.R. Zhai, L.H. Dai, T.Y. Zhang, Acta Mater. 108 (2016) 252-263.
DOI URL |
[27] |
X. Tian, J. Cui, K. Ma, M. Xiang, Int. J. Heat Mass Transf. 158 (2020) 120013.
DOI URL |
[28] |
L. Wu, W. Yu, S. Hu, S. Shen, Int. J. Plast. 97 (2017) 246-258.
DOI URL |
[29] |
Z. Li, R.C. Bradt, J. Mater. Sci. 21 (1986) 4366-4368.
DOI URL |
[30] |
L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, J. Nucl. Mater. 371 (2007) 329-377.
DOI URL |
[31] |
J. Tersoff, Phys. Rev. B 39 (1989) 5566-5568.
DOI URL |
[32] |
P. Erhart, K. Albe, Phys. Rev. B 71 (2005) 035211.
DOI URL |
[33] |
P. Vashishta, R.K. Kalia, A. Nakano, J.P. Rino, J. Appl. Phys. 101 (2007) 103515.
DOI URL |
[34] |
K. Maekawa, A. Itoh, Wear 188 (1995) 115-122.
DOI URL |
[35] |
T. Kato, T. Nagai, Y. Sasajima, J. Onuki, Mater. Trans. 51 (2010) 664-669.
DOI URL |
[36] |
L. Zheng, Q. An, Y. Xie, Z. Sun, S.N. Luo, J. Chem. Phys. 127 (2007) 164503.
DOI URL |
[37] |
J.C. E, L. Wang, Y. Cai, H.A. Wu, S.N. Luo, J. Chem. Phys. 142 (2015) 064704.
DOI URL |
[38] |
S. Nosé, Mol. Phys. 52 (1984) 255-268.
DOI URL |
[39] |
W.G. Hoover, Phys. Rev. A 31 (1985) 1695-1697.
DOI URL |
[40] |
M. Parrinello, A. Rahman, J. Appl. Phys. 52 (1981) 7182-7190.
DOI URL |
[41] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[42] | A.P. Thompson, S.J. Plimpton, W. Mattson, J. Chem.Phys. 131 (2009)154107. |
[43] |
C.H. Rycroft, Chaos 19 (2009) 041111.
DOI URL |
[44] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
[45] |
A. Stukowski, K. Albe, Modell. Simul. Mater. Sci. Eng. 18 (2010) 085001.
DOI URL |
[46] |
A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20 (2012) 085007.
DOI URL |
[47] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20 (2012) 045021.
DOI URL |
[48] |
J. Maj, M. Basista, W. W ęglewski, K. Bochenek, A. Strojny-N ędza, K. Naplocha, T. Panzner, M. Tatarková, F. Fiori, Mater. Sci. Eng. A 715 (2018) 154-162.
DOI URL |
[49] |
X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andrä, W.M. Gan, M. Hofmann, Z.Y. Ma, Acta Mater. 87 (2015) 161-173.
DOI URL |
[50] | N. Chawla, K.K. Chawla, Metal Matrix Composites, Metal Matrix Composites, Springer, 2013. |
[51] |
C.S. Wong, A. Pramanik, A.K. Basak, Mater. Sci. Technol. 34 (2018) 1388-1400.
DOI URL |
[52] |
S. Ho, A. Saigal, Acta Metall. Mater. 42 (1994) 3253-3262.
DOI URL |
[53] | D. Hull, D.J. Bacon, Introduction to Dislocations, 5th ed., Elsevier, 2011. |
[54] |
J. Jiang, T.B. Britton, A.J. Wilkinson, Int. J. Plast. 69 (2015) 102-117.
DOI URL |
[55] |
C.B. Carter, I.L.F. Ray, Philos. Mag. 35 (1977) 189-200.
DOI URL |
[56] | J. Silcox, P.B. Hirsch, Philos. Mag. 4 (1959) 72-89. |
[57] |
M. Kiritani, Y. Satoh, Y. Kizuka, K. Arakawa, Y. Ogasawara, S. Arai, Y. Shimo- mura, Philos. Mag. Lett. 79 (1999) 797-804.
DOI URL |
[58] |
B.N. Singh, S.I. Golubov, H. Trinkaus, D.J. Edwards, M. Eldrup, J. Nucl. Mater. 328 (2004) 77-87.
DOI URL |
[59] |
L. Zhang, C. Lu, G. Michal, G. Deng, K. Tieu, Scr. Mater. 136 (2017) 78-82.
DOI URL |
[60] |
L. Zhang, C. Lu, K. Tieu, L. Su, X. Zhao, L. Pei, Mater. Sci. Eng. A 680 (2017) 27-38.
DOI URL |
[61] |
M. Kiritani, Mater. Chem. Phys. 50 (1997) 133-138.
DOI URL |
[62] |
M.H. Loretto, P.J. Phillips, M.J. Mills, Scr. Mater. 94 (2015) 1-4.
DOI URL |
[63] |
M.H. Loretto, L.M. Clarebrough, R.L. Segall, Philos. Mag. 11 (1965) 459-465.
DOI URL |
[64] |
Y. Dai, M. Victoria, Acta Mater. 45 (1997) 3495-3501.
DOI URL |
[65] |
Q. Wang, Q. Bai, J. Chen, Y. Guo, W. Xie, Appl. Surf. Sci. 355 (2015) 1153-1160.
DOI URL |
[66] |
L.H. Dai, Z. Ling, Y.L. Bai, Compos. Sci. Technol. 61 (2001) 1057-1063.
DOI URL |
[67] |
B.P. Uberuaga, R.G. Hoagland, A.F. Voter, S.M. Valone, Phys. Rev. Lett. 99 (2007) 135501.
DOI URL |
[68] |
H. Wang, D.S. Xu, R. Yang, P. Veyssière, Acta Mater. 59 (2011) 1-9.
DOI URL |
[69] |
H. Wang, D.S. Xu, R. Yang, P. Veyssière, Acta Mater. 59 (2011) 10-18.
DOI URL |
[70] |
L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V.V. Bulatov, Nature 550 (2017) 492-495.
DOI URL |
[71] |
T. Schubert, A. Brendel, K. Schmid, T. Koeck, Ł. Ciupi ński, W. Zieli ński, T. Weißgärber, B. Kieback, Compos. Part A Appl. Sci. 38 (2007) 2398-2403.
DOI URL |
[72] |
G. Chen, W. Yang, R. Dong, M. Hussain, G. Wu, Mater. Des. 63 (2014) 109-114.
DOI URL |
[1] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[2] | Wensen Huang, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su. High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 187-198. |
[3] | Z. QU, Z.J. Zhang, J.X. Yan, P. Zhang, B.S. Gong, S.L. Liu, Z.F. Zhang, T.G. Langdan. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 54-67. |
[4] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[5] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[6] | Kwang Kyu Ko, Hyo Ju Bae, Eun Hye Park, Hyeon-Uk Jeong, Hyoung Seok Park, Jae Seok Jeong, Jung Gi Kim, Hyokyung Sung, Nokeun Park, Jae Bok Seol. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117(0): 225-237. |
[7] | Shaoyu Zhao, Yingyan Zhang, Jie Yang, Sritawat Kitipornchai. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2022, 120(0): 196-204. |
[8] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
[9] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[10] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
[11] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[12] | Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten [J]. J. Mater. Sci. Technol., 2022, 105(0): 242-258. |
[13] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[14] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[15] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||