J. Mater. Sci. Technol. ›› 2022, Vol. 123: 13-25.DOI: 10.1016/j.jmst.2021.12.072
• Research Article • Previous Articles Next Articles
Lizhuang Yanga, Bowen Pua, Xiang Zhanga,b,*(), Junwei Shaa, Chunnian Hea,b,c,d,*(
), Naiqin Zhaoa,c,d
Received:
2021-09-10
Revised:
2021-11-24
Accepted:
2021-12-07
Published:
2022-10-01
Online:
2022-09-30
Contact:
Xiang Zhang,Chunnian He
About author:
cnhe08@tju.edu.cn (C. He).Lizhuang Yang, Bowen Pu, Xiang Zhang, Junwei Sha, Chunnian He, Naiqin Zhao. Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy[J]. J. Mater. Sci. Technol., 2022, 123: 13-25.
Fig. 2. Morphology characterization of the as-synthesized reinforcement powders: (a-f) SEM images at different magnifications and (g-i) HRTEM images of Cu@GNS-CNTs.
Fig. 3. (a-e) TEM images of Al-2.0 Cu@GNS-CNTs composite; (f) bright-field STEM image, (g) the corresponding EDS line scan spectra of Al and Cu elements, (h) TEM observation of CNTs on basal-plane of GNS; inset images are the corresponding FFT diffraction points and IFFT image marked with box regions.
Fig. 4. (a) Tensile stress-strain curves and (b) corresponding strain-hardening curves of the pure Al and composites reinforced by Cu@GNS-CNTs; (c) strain hardening exponent of Al and composites with different content of Cu@GNS-CNTs derived from the $\text{ln}\sigma $-$\text{ln}\varepsilon $ curves; (d) total elongation versus tensile strength plot of the Al-Cu@GNS-CNTs composites in this work compared with previously reported studies.
Samples | Tensile strength (MPa) | Yield strength (MPa) | Total elongation (%) | Uniform elongation (%) |
---|---|---|---|---|
Al | 159 ± 5 | 99 ± 3 | 25.5 ± 2.0 | 11.6 ± 1.5 |
Al-0.5 Cu@GNS-CNTs | 214 ± 7 | 136 ± 5 | 19.6 ± 2.4 | 11.5 ± 0.8 |
Al-1.0 Cu@GNS-CNTs | 239 ± 7 | 153 ± 3 | 15.1 ± 0.9 | 10.4 ± 0.7 |
Al-1.5 Cu@GNS-CNTs | 292 ± 10 | 171 ± 9 | 16.5 ± 0.4 | 11.9 ± 1.0 |
Al-2.0 Cu@GNS-CNTs | 342 ± 5 | 201 ± 4 | 16.4 ± 2.6 | 11.8 ± 1.2 |
Table 1. Tensile properties of the pure Al and composites reinforced by Cu@GNS-CNTs with different content.
Samples | Tensile strength (MPa) | Yield strength (MPa) | Total elongation (%) | Uniform elongation (%) |
---|---|---|---|---|
Al | 159 ± 5 | 99 ± 3 | 25.5 ± 2.0 | 11.6 ± 1.5 |
Al-0.5 Cu@GNS-CNTs | 214 ± 7 | 136 ± 5 | 19.6 ± 2.4 | 11.5 ± 0.8 |
Al-1.0 Cu@GNS-CNTs | 239 ± 7 | 153 ± 3 | 15.1 ± 0.9 | 10.4 ± 0.7 |
Al-1.5 Cu@GNS-CNTs | 292 ± 10 | 171 ± 9 | 16.5 ± 0.4 | 11.9 ± 1.0 |
Al-2.0 Cu@GNS-CNTs | 342 ± 5 | 201 ± 4 | 16.4 ± 2.6 | 11.8 ± 1.2 |
Fig. 5. TEM observations of (a) Al-2.0 GNS, (b, c) the corresponding magnification of the selected area A and B, respectively; (d-f) Al-2.0 Cu NPs@GNS and (g-i) Al-2.0 CNTs composites, inset images are the FFT diffraction points marked with box regions.
Fig. 6. (a) TEM characterization of reduced CNTs; (b-d) HRTEM images on the tip and outer wall of reduced CNTs; (e, f) Raman and FTIR spectroscopy of reduced CNTs; (g, h) TEM images of Cu@GNS-CNTs; (i) schematic diagram of Cu@GNS-CNTs.
Fig. 7. TEM observations on the distribution, interfacial structure and reaction in Al-2.0 Cu@GNS-mCNTs composite, inset images are the FFT diffraction points and IFFT image marked with box regions.
Fig. 10. Fracture surfaces of (a, b) Al-2.0 CNTs, (c) Al-2.0 GNS, (d) Al-Cu @GNS and (e, f) Al-Cu@GNS-CNTs; (g) schematic diagram of tensile and fracture processes.
Fig. 11. EBSD on microstructure and grain size analysis for pure Al and composites reinforced by different reinforcements: (a) pure Al; (b) Al-2.0 Cu@GNS-CNTs; (c) Al-2.0 GNS; (d) Al-2.0 Cu@GNS; (e) Al-2.0 CNTs; (f) Al-2.0 Cu@GNS-mCNTs.
Fig. 12. (a) Radar chart of strengthening mechanisms and mechanical properties as a function of different composites; (b-f) schematic description for different types of distribution and interface bonding in composites.
[1] |
C. Lee, X. Wei, J. Kysar, J. Hone, Science 321 (2008) 385-388.
DOI URL |
[2] |
K. Novoselov, A. Geim, Nat. Mater. 6 (2007) 183-191.
PMID |
[3] |
K. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, Science 353 (2016) aac9439.
DOI URL |
[4] |
X. Zhang, N. Zhao, C. He, Prog. Mater. Sci. 113 (2020) 100672.
DOI URL |
[5] |
V. Kamysbayev, N. James, A. Filatov, V. Srivastava, B. Anasori, H. Jaeger, Y. Gogotsi, D. Talapin, ACS Nano 13 (2019) 12415-12424.
DOI PMID |
[6] |
Q. Yan, B. Chen, L. Cao, K. Liu, S. Li, L. Jia, K. Kondoh, J. Li, J. Mater. Sci. Technol. 96 (2022) 85-93.
DOI |
[7] |
X. Gao, H. Yue, E. Guo, S. Zhang, L. Yao, X. Lin, B. Wang, E. Guan, J. Mater. Sci. Technol. 34 (2018) 1925-1931.
DOI |
[8] |
A. Zandiatashbar, G.H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, N. Koratkar, Nat. Commun. 5 (2014) 3186.
DOI PMID |
[9] |
X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, ACS Appl. Mater. Interfaces 10 (2018) 37586-37601.
DOI URL |
[10] |
Z. Li, H. Wang, Q. Guo, Z. Li, D.B. Xiong, Y. Su, H. Gao, X. Li, D. Zhang, Nano Lett. 18 (2018) 6255-6264.
DOI URL |
[11] |
X. Zhang, Y. Xu, M. Wang, E. Liu, N. Zhao, C. Shi, D. Lin, F. Zhu, C. He, Nat. Commun. 11 (2020) 1-13.
DOI URL |
[12] |
S. Guo, X. Zhang, C. Shi, E. Liu, C. He, F. He, N. Zhao, Powder Technol. 362 (2020) 126-134.
DOI URL |
[13] |
Z. Zhang, G. Fan, Z. Tan, H. Zhao, Y. Xu, D. Xiong, Z. Li, Compos. Part B Eng. 217 (2021) 108916.
DOI URL |
[14] |
Y. Zhang, X. Li, Nano Lett. 17 (2017) 6907-6915.
DOI URL |
[15] |
L. Liu, Y. Li, H. Zhang, X. Cheng, Q. Fan, X. Mu, S. Guo, Ceram. Int. 47 (2021) 4338-4343.
DOI URL |
[16] |
L. Liu, Y. Li, H. Zhang, X. Cheng, X. Mu, Q. Fan, Y. Ge, S. Guo, Compos. Part B Eng. 216 (2021) 108851.
DOI URL |
[17] | B. Peng, M. Locascio, P. Zapol, S. Li, S. Mielke, G. Schatz, H. Espinosa, Nat. Nan- otechnol. 3 (2008) 626-631. |
[18] |
T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, T. Thio, Nature 382 (1996) 54-56.
DOI URL |
[19] |
K. Ma, Z. Liu, S. Bi, X. Zhang, B. Xiao, Z. Ma, J. Mater. Sci. Technol. 70 (2021) 73-82.
DOI |
[20] |
K. Ma, Z. Liu, K. Liu, X.G. Chen, B. Xiao, Z. Ma, Carbon. 178 (2021) 190-201.
DOI URL |
[21] |
K. Ma, Z. Liu, B. Liu, B. Xiao, Z. Ma, Compos. Part A Appl. Sci. Manuf. 140 (2021) 106198.
DOI URL |
[22] | Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, D. Zhang, Carbon. 95 (2015) 419-427. |
[23] |
M. Romano, N. Li, D. Antiohos, J. Razal, A. Nattestad, S. Beirne, S. Fang, Y. Chen, R. Jalili, G. Wallace, Adv. Mater. 25 (2013) 6602-6606.
DOI URL |
[24] |
E. Hacopian, Y. Yang, B. Ni, Y. Li, X. Li, Q. Chen, H. Guo, J. Tour, H. Gao, J. Lou, ACS Nano 12 (2018) 7901-7910.
DOI PMID |
[25] | M. Yang, L. Weng, H. Zhu, F. Zhang, T. Fan, D. Zhang ,Scr. Mater. 138 (2017) 17-21. |
[26] | X. Liang, Q. Cheng, Compos. Commun. 10 (2018) 122-128. |
[27] | X. Chen, J. Tao, Y. Liu, R. Bao, F. Li, C. Li, J. Yi, Carbon. 146 (2019) 736-755. |
[28] |
Q. Cheng, M. Li, L. Jiang, Z. Tang, Adv. Mater. 24 (2012) 1838-1843.
DOI URL |
[29] |
Z. Niu, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, W. Zhou, S. Xie, Adv. Funct. Mater. 22 (2012) 5209-5215.
DOI URL |
[30] |
G. Li, B. Xiong, J. Alloy. Compd. 697 (2017) 31-36.
DOI URL |
[31] |
X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, N. Zhao, C. He, Compos. Part A Appl. Sci. Manuf. 103 (2017) 178-187.
DOI URL |
[32] |
J. Sha, R.V. Salvatierra, P. Dong, Y. Li, S.K. Lee, T. Wang, C. Zhang, J. Zhang, Y. Ji, P. M. Ajayan, ACS Appl. Mater. Interfaces 9 (2017) 7376-7384.
DOI URL |
[33] |
Y. Jiang, Z. Tan, R. Xu, G. Fan, D.B. Xiong, Q. Guo, Y. Su, Z. Li, D. Zhang, Compos. Part A Appl. Sci. Manuf. 111 (2018) 73-82.
DOI URL |
[34] |
Y. Jiang, Z. Tan, G. Fan, Z. Zhang, D.B. Xiong, Q. Guo, Z. Li, D. Zhang, Carbon 161 (2020) 17-24.
DOI URL |
[35] | W. Zhou, S. Bang, H. Kurita, T. Miyazaki, Y. Fan, A. Kawasaki, Carbon 96 (2016) 919-928. |
[36] |
W. Zhou, P. Mikulova, Y. Fan, K. Kikuchi, N. Nomura, A. Kawasaki, Compos. Part B Eng. 167 (2019) 93-99.
DOI URL |
[37] |
Z. Yan, Z. Peng, G. Casillas, J. Lin, C. Xiang, H. Zhou, Y. Yang, G. Ruan, A.R.O. Raji, E. L. Samuel, ACS Nano 8 (2014) 5061-5068.
DOI URL |
[38] |
P. Movahed, S. Kolahgar, S. Marashi, M. Pouranvari, N. Parvin, Mater. Sci. Eng. A 518 (2009) 1-6.
DOI URL |
[39] | K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, H. Zhang, Carbon 133 (2018) 127-139. |
[40] | F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Carbon 96 (2016) 836-842. |
[41] | S. Shin, H. Choi, J. Shin, D. Bae, Carbon 82 (2015) 143-151. |
[42] |
C. Yu, P. Kao, C. Chang, Acta Mater. 53 (2005) 4019-4028.
DOI URL |
[43] |
M. Reddy, R. Shakoor, G. Parande, V. Manakari, F. Ubaid, A. Mohamed, M. Gupta, Prog. Nat. Sci. Mater. Int. 27 (2017) 606-614.
DOI URL |
[44] |
W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, A. Kawasaki, Acta Mater. 125 (2017) 369-376.
DOI URL |
[45] |
B. Chen, K. Kondoh, H. Imai, J. Umeda, M. Takahashi, Scr. Mater. 113 (2016) 158-162.
DOI URL |
[46] | Z. Yu, W. Yang, C. Zhou, N. Zhang, Z. Chao, H. Liu, Y. Cao, Y. Sun, P. Shao, G. Wu, Carbon 141 (2019) 25-39. |
[47] | B. Guo, B. Chen, X. Zhang, X. Cen, X. Wang, M. Song, S. Ni, J. Yi, T. Shen, Y. Du, Carbon 135 (2018) 224-235. |
[48] |
S. Li, Y. Su, Q. Ouyang, D. Zhang, Mater. Lett. 167 (2016) 118-121.
DOI URL |
[49] | W. Kim, Y. Yu, Scr. Mater. 72 (2014) 25-28. |
[50] |
G. Liu, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, Mater. Sci. Eng. A 699 (2017) 185-193.
DOI URL |
[51] |
R. Guan, Y. Wang, S. Zheng, N. Su, Z. Ji, Z. Liu, Y. An, B. Chen, Mater. Sci. Eng. A 754 (2019) 437-446.
DOI URL |
[52] |
J. Wang, X. Zhang, N. Zhao, C. He, J. Mater. Sci. 54 (2019) 5498-5512.
DOI |
[53] |
M. Rashad, F. Pan, A. Tang, M. Asif, M. Aamir, J. Alloy. Compd. 603 (2014) 111-118.
DOI URL |
[54] |
Y. Tang, X. Yang, R. Wang, M. Li, Mater. Sci. Eng. A 599 (2014) 247-254.
DOI URL |
[55] |
B. Bramfitt, Metall. Trans. 1 (1970) 1987-1995.
DOI URL |
[56] |
P. Ma, N. Siddiqui, G. Marom, J. Kim, Compos. Part A Appl. Sci. Manuf. 41 (2010) 1345-1367.
DOI URL |
[57] | J. Chen, J. Shan, T. Tsukada, F. Munekane, A. Kuno, M. Matsuo, T. Hayashi, Y. Kim, M. Endo, Carbon. 45 (2007) 274-280. |
[58] |
S. Cho, K. Kikuchi, T. Miyazaki, A. Kawasaki, Y. Arami, J.F. Silvain, Acta Mater. 61 (2013) 708-716.
DOI URL |
[59] |
S. Tavassoli, M. Abbasi, R. Tahavvori, Mater. Des. 108 (2016) 343-353.
DOI URL |
[60] | B. Guo, Y. Chen, Z. Wang, J. Yi, S. Ni, Y. Du, W. Li, M. Song, Carbon 159 (2020) 201-212. |
[61] | B. Guo, X. Zhang, X. Cen, B. Chen, X. Wang, M. Song, S. Ni, J. Yi, T. Shen, Y. Du, Carbon 139 (2018) 459-471. |
[62] |
B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, K. Kondoh, Acta Mater. 140 (2017) 317-325.
DOI URL |
[63] |
X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, W. Bacsa, N. Zhao, C. He, Nanoscale 9 (2017) 11929-11938.
DOI URL |
[64] |
B. Pu, J. Sha, E. Liu, C. He, N. Zhao, Mater. Sci. Eng. A 742 (2019) 201-210.
DOI URL |
[65] | S. Shin, D. Bae, Compos. Part A Appl. Sci. Manuf. 78 (2015) 42-47. |
[66] | L. Zhu, J. Lu, Int. J. Plast. 30 (2012) 166-184. |
[67] |
Q. Liu, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li, D. Zhang, Compos. Part B Eng. 217 (2021) 108915.
DOI URL |
[68] | B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, K. Kondoh, Carbon 114 (2017) 198-208. |
[69] | M. Yang, L. Weng, H. Zhu, T. Fan, D. Zhang, Carbon 118 (2017) 250-260. |
[1] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | Y.T. Zhou, X.H. Shao, S.J. Zheng, X.L. Ma. Structure evolution of the Fe3C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires [J]. J. Mater. Sci. Technol., 2022, 101(0): 28-36. |
[4] | Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 60-70. |
[5] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[6] | Wenhao Qian, Tao Song, Mao Ye, Xiaoyu Huang, Yongjun Li, Bingjie Hao. Functionalized nanographene oxide/PEG/rhodamine B/gold nanocomposite for electrochemical determination of glucose [J]. J. Mater. Sci. Technol., 2022, 122(0): 141-147. |
[7] | J. Fu, H. Li, X. Song, M.W. Fu. Multi-scale defects in powder-based additively manufactured metals and alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 165-199. |
[8] | Yao Guo, Leilei Zhang, Qiang Song, Ruonan Zhang, Fei Zhao, Wei Li, Hongchao Sheng, Xianghui Hou, Hejun Li. Simultaneously enhancing mechanical and tribological properties of carbon fiber composites by grafting SiC hexagonal nanopyramids for brake disk application [J]. J. Mater. Sci. Technol., 2022, 121(0): 1-8. |
[9] | Juntao Song, Guiqing Chen, Huimin Xiang, Fuzhi Dai, Shun Dong, Wenbo Han, Xinghong Zhang, Yanchun Zhou. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry [J]. J. Mater. Sci. Technol., 2022, 121(0): 181-189. |
[10] | Deliang Cheng, Lichun Yang, Renzong Hu, Jie Cui, Jiangwen Liu, Min Zhu. Construction of SnS-Mo-graphene nanosheets composite for highly reversible and stable lithium/sodium storage [J]. J. Mater. Sci. Technol., 2022, 121(0): 190-198. |
[11] | Sithiprumnea Dul, Brenda J. Alonso Gutierrez, Alessandro Pegoretti, Jaime Alvarez-Quintana, Luca Fambri. 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2022, 121(0): 52-66. |
[12] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
[13] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[14] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[15] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||