J. Mater. Sci. Technol. ›› 2022, Vol. 121: 181-189.DOI: 10.1016/j.jmst.2021.12.063
• Research Article • Previous Articles Next Articles
Juntao Songa,b, Guiqing Chena, Huimin Xiangb, Fuzhi Daib, Shun Donga, Wenbo Hana,*(), Xinghong Zhanga, Yanchun Zhoub,*(
)
Received:
2021-11-16
Revised:
2021-12-22
Accepted:
2021-12-23
Published:
2022-09-10
Online:
2022-03-17
Contact:
Wenbo Han,Yanchun Zhou
About author:
yczhou@alum.imr.ac.cn (Y. Zhou).Juntao Song, Guiqing Chen, Huimin Xiang, Fuzhi Dai, Shun Dong, Wenbo Han, Xinghong Zhang, Yanchun Zhou. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry[J]. J. Mater. Sci. Technol., 2022, 121: 181-189.
Composition code | ZHTNC | ZHTNC0.8 | ZHTNC0.6 | ZHTTC | ZHTTC0.8 | ZHTTC0.6 |
---|---|---|---|---|---|---|
Carbon content (wt%) | 7.27 | 6.58 | 5.96 | 8.19 | 7.81 | 6.84 |
Oxygen content (wt%) | 0.9 | 1.24 | 2.47 | 0.98 | 1.19 | 2.27 |
Carbon stoichiometry | 0.90 | 0.81 | 0.74 | 0.94 | 0.89 | 0.78 |
Oxygen stoichiometry | 0.08 | 0.11 | 0.23 | 0.08 | 0.10 | 0.19 |
Vacancy stoichiometry | 0.02 | 0.08 | 0.03 | 0 | 0.01 | 0.03 |
Final composition | ZHTNC0.9O0.08 | ZHTNC0.81O0.11 | ZHTNC0.74O0.23 | ZHTTC0.94O0.08 | ZHTTC0.89O0.1 | ZHTTC0.78O0.19 |
Table 1. Carbon and oxygen content of HE TMCx with their carbon, oxygen and vacancy stoichiometry.
Composition code | ZHTNC | ZHTNC0.8 | ZHTNC0.6 | ZHTTC | ZHTTC0.8 | ZHTTC0.6 |
---|---|---|---|---|---|---|
Carbon content (wt%) | 7.27 | 6.58 | 5.96 | 8.19 | 7.81 | 6.84 |
Oxygen content (wt%) | 0.9 | 1.24 | 2.47 | 0.98 | 1.19 | 2.27 |
Carbon stoichiometry | 0.90 | 0.81 | 0.74 | 0.94 | 0.89 | 0.78 |
Oxygen stoichiometry | 0.08 | 0.11 | 0.23 | 0.08 | 0.10 | 0.19 |
Vacancy stoichiometry | 0.02 | 0.08 | 0.03 | 0 | 0.01 | 0.03 |
Final composition | ZHTNC0.9O0.08 | ZHTNC0.81O0.11 | ZHTNC0.74O0.23 | ZHTTC0.94O0.08 | ZHTTC0.89O0.1 | ZHTTC0.78O0.19 |
Composition code | ZrC | HfC | TaC | TiC | NbC | Empty Cell |
---|---|---|---|---|---|---|
Lattice constant (Å) | 4.69 | 4.63 | 4.45 | 4.33 | 4.47 | |
Composition code | ZHTNC | ZHTNC0.8 | ZHTNC0.6 | ZHTTC | ZHTTC0.8 | ZHTTC0.6 |
| 1.7614R | 2.0018R | 2.0523R | 1.6465R | 1.7663R | 2.0008R |
Table 2. Calculated $\text{ }\!\!\Delta\!\!\text{ }{{S}_{\text{config}}}$ of ZHTNCx and ZHTTCx with different carbon stoichiometry deviations and lattice constants of their constituted binary carbides.
Composition code | ZrC | HfC | TaC | TiC | NbC | Empty Cell |
---|---|---|---|---|---|---|
Lattice constant (Å) | 4.69 | 4.63 | 4.45 | 4.33 | 4.47 | |
Composition code | ZHTNC | ZHTNC0.8 | ZHTNC0.6 | ZHTTC | ZHTTC0.8 | ZHTTC0.6 |
| 1.7614R | 2.0018R | 2.0523R | 1.6465R | 1.7663R | 2.0008R |
Fig. 3. XRD patterns of (a) PS-ZHTTCx prepared at 2000 °C, (b) PS-ZHTNCx prepared at 2000 °C, (c) PS-ZHTNCx prepared at 1900 °C and (d) PS-ZHTNCx prepared at 1800 °C. For clarity only the peaks in the 2θ range of 30° to 45° are shown.
Fig. 4. Microstructure and statistical grain size of (a), (d) PS-ZHTNC, (b), (e) PS-ZHTNC0.8, (c), (f) PS-ZHTNC0.6 (necking growth are indicated by the yellow circle) prepared at 2000 °C.
Substance | 2 theta (°) | Lattice parameters (Å) | Theoretical density (g·cm3) | Bulk density (g·cm3) | Relative density | Porosity | |
---|---|---|---|---|---|---|---|
(111) | (200) | ||||||
PS-ZHTNC | 34.15 | 39.65 | 4.5431 | 10.48 | 3.03 | 28.91% | 71.09% |
PS-ZHTNC0.8 | 34.25 | 39.75 | 4.5316 | 10.39 | 3.78 | 36.38% | 63.62% |
PS-ZHTNC0.6 | 34.29 | 39.81 | 4.5263 | 10.25 | 5.49 | 53.56% | 46.44% |
SPS-ZHTNC | 34.23 | 39.71 | 4.5354 | 10.53 | 9.49 | 90.12% | 9.88% |
SPS-ZHTNC0.8 | 34.27 | 39.77 | 4.5291 | 10.40 | 9.80 | 94.23% | 5.77% |
SPS-ZHTNC0.6 | 34.29 | 39.80 | 4.5255 | 10.26 | 9.78 | 95.32% | 4.68% |
Table 3. Lattice constants, theoretical density, bulk density and relative density for ZHTNCx prepared at 2000 °C.
Substance | 2 theta (°) | Lattice parameters (Å) | Theoretical density (g·cm3) | Bulk density (g·cm3) | Relative density | Porosity | |
---|---|---|---|---|---|---|---|
(111) | (200) | ||||||
PS-ZHTNC | 34.15 | 39.65 | 4.5431 | 10.48 | 3.03 | 28.91% | 71.09% |
PS-ZHTNC0.8 | 34.25 | 39.75 | 4.5316 | 10.39 | 3.78 | 36.38% | 63.62% |
PS-ZHTNC0.6 | 34.29 | 39.81 | 4.5263 | 10.25 | 5.49 | 53.56% | 46.44% |
SPS-ZHTNC | 34.23 | 39.71 | 4.5354 | 10.53 | 9.49 | 90.12% | 9.88% |
SPS-ZHTNC0.8 | 34.27 | 39.77 | 4.5291 | 10.40 | 9.80 | 94.23% | 5.77% |
SPS-ZHTNC0.6 | 34.29 | 39.80 | 4.5255 | 10.26 | 9.78 | 95.32% | 4.68% |
Fig. 6. Polished surfaces, fracture surfaces and statistical grain sizes of (a), (d), (g) SPS-ZHTNC, (b), (e), (h) SPS-ZHTNC0.8, (c), (f), (i) SPS-ZHTNC0.6 prepared by SPS under 50 MPa at 2000 °C (pores are indicated by the yellow circle).
Composition code | Relative density | Flexural strength (MPa) | Fracture toughness (MPa⋅m1/2) | Vickers hardness (GPa) | Brittleness index (μm-1/2) | Refs. |
---|---|---|---|---|---|---|
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | >99.0% | 421±27 | 3.5±0.3 | 25.0 ± 1.0 | 7.143 | [ |
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | 98.6% | 332±24 | 4.51±0.61 | 21.9±0.4 | 4.856 | [ |
(Zr0.33Ta0.33Nb0.33)C | 95% | 460±24 | 2.9±0.3 | - | - | [ |
(Zr0.25Nb0.25Ti0.25V0.25)C | 95.1% | - | - | 19.1±0.5 | - | [ |
(Hf0.25Zr0.25Ta0.25Nb0.25)C | - | - | - | 28.8 | - | [ |
(Mo0.25W0.25Ta0.25Nb0.25)C | - | - | - | 21.9 | - | [ |
(Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 | ∼100% | - | 3.7±0.4 | 25.0±1.8 | 6.757 | [ |
(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 | 99.5% | - | 2.25 ± 0.27 | 25.06 ± 0.32 | 11.138 | [ |
SPS-ZHTNC | 90.98% | 384±34 | 4.58±0.34 | 18.7±0.7 | 4.083 | This work |
SPS-ZHTNC0.8 | 94.04% | 419±14 | 4.73±0.24 | 17.4±0.6 | 3.679 | This work |
SPS-ZHTNC0.6 | 94.25% | 385±29 | 4.41±0.78 | 16.9±0.4 | 3.832 | This work |
Table 4. Relative density, room temperature flexural strength, fracture toughness, Vickers hardness and brittleness index of HE TMCx compared to results from previous studies [[13], [14], 45, 54, 55].
Composition code | Relative density | Flexural strength (MPa) | Fracture toughness (MPa⋅m1/2) | Vickers hardness (GPa) | Brittleness index (μm-1/2) | Refs. |
---|---|---|---|---|---|---|
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | >99.0% | 421±27 | 3.5±0.3 | 25.0 ± 1.0 | 7.143 | [ |
(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C | 98.6% | 332±24 | 4.51±0.61 | 21.9±0.4 | 4.856 | [ |
(Zr0.33Ta0.33Nb0.33)C | 95% | 460±24 | 2.9±0.3 | - | - | [ |
(Zr0.25Nb0.25Ti0.25V0.25)C | 95.1% | - | - | 19.1±0.5 | - | [ |
(Hf0.25Zr0.25Ta0.25Nb0.25)C | - | - | - | 28.8 | - | [ |
(Mo0.25W0.25Ta0.25Nb0.25)C | - | - | - | 21.9 | - | [ |
(Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 | ∼100% | - | 3.7±0.4 | 25.0±1.8 | 6.757 | [ |
(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 | 99.5% | - | 2.25 ± 0.27 | 25.06 ± 0.32 | 11.138 | [ |
SPS-ZHTNC | 90.98% | 384±34 | 4.58±0.34 | 18.7±0.7 | 4.083 | This work |
SPS-ZHTNC0.8 | 94.04% | 419±14 | 4.73±0.24 | 17.4±0.6 | 3.679 | This work |
SPS-ZHTNC0.6 | 94.25% | 385±29 | 4.41±0.78 | 16.9±0.4 | 3.832 | This work |
[1] |
H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2778-2784.
DOI URL |
[2] |
Y. Zhou, W.G. Fahrenholtz, J. Graham, G.E. Hilmas, J. Am. Ceram. Soc. 104 (2021) 4708-4717.
DOI URL |
[3] |
R. Pan, G. Chen, X. Yu, Y. Yang, W. Han, J. Eur. Ceram. Soc. 41 (2021) 2247-2254.
DOI URL |
[4] |
S.A. Ghaffari, M.A. Faghihi-Sani, F. Golestani-Fard, M. Nojabayy, Int. J. Refract. Metals Hard Mater. 41 (2013) 180-184.
DOI URL |
[5] | Y.R. Zhou, J Jiao, J.H. Yang, X.X. Lv, Z.Y. Jiang, R. Yang, H. Liu, Y. Gao, Mater. Chem. Phys. 267 (2021) |
[6] |
Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[7] |
Z. Zhao, H. Xiang, H. Chen, F.Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 595-605.
DOI URL |
[8] |
W. Zhang, B. Zhao, H. Xiang, F.Z. Dai, S. Wu, Y. Zhou, J. Adv. Ceram. 10 (2021) 62-77.
DOI URL |
[9] |
H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2404-2408.
DOI URL |
[10] |
H. Zhang, B. Zhao, F.Z. Dai, H. Xiang, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 77 (2021) 58-65.
DOI URL |
[11] | W. Zhang, B. Zhao, N. Ni, H. Xiang, F.Z. Dai, S. Wu, Y. Zhou, J. Mater. Sci. Tech-nol. 87 (2021) 155-166. |
[12] | F. Wang, X. Zhang, X. Yan, Y. Lu, M. Nastasi, Y. Chen, B. Cui, J. Am. Ceram. Soc. 103 (2020) 4 463-4 472. |
[13] |
L. Feng, W.T. Chen, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 104 (2021) 419-427.
DOI URL |
[14] |
D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, O. Vasylkiv, Scr. Mater. 164 (2019) 12-16.
DOI URL |
[15] |
X. Han, V. Girman, R. Sedlak, J. Dusza, E.G. Castle, Y. Wang, M. Reece, C. Zhang, J. Eur. Ceram. Soc. 40 (2020) 2709-2715.
DOI URL |
[16] |
H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[17] | X. Yan, L. Constantin, Y. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4 486-4 491. |
[18] |
H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Lei, J. Zhang, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 1700-1705.
DOI |
[19] |
F.Z. Dai, B. Wen, Y. Sun, H. Xiang, Y. Zhou, J. Mater. Sci. Technol. 43 (2020) 168-174.
DOI URL |
[20] |
J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei, W. Wang, Ceram. Int. 44 (2018) 22014-22018.
DOI URL |
[21] |
Y. Zhou, B. Zhao, H. Chen, H. Xiang, F.Z. Dai, S. Wu, W. Xu, J. Mater. Sci. Technol. 74 (2021) 105-118.
DOI URL |
[22] | V. Braic, M. Balaceanu, M. Braic, A. Vladescu, S. Panseri, A. Russo, J. Mech. Be-hav. Biomed. Mater. 10 (2012) 197-205. |
[23] |
B. Du, H. Liu, Y. Chu, J. Am. Ceram. Soc. 103 (2020) 4063-4068.
DOI URL |
[24] |
Y. Sun, F. Chen, W. Qiu, L. Ye, W. Han, W. Zhao, H. Zhou, T. Zhao, J. Am. Ceram. Soc. 103 (2020) 6081-6087.
DOI URL |
[25] |
Q. Zhao, J. Mei, W. Jin, Q. Jiang, J. Am. Ceram. Soc. 103 (2020) 4733-4737.
DOI URL |
[26] |
E. Chicardi, C. García-Garrido, J. Hernández-Saz, F.J. Gotor, Ceram. Int. 46 (2020) 21421-21430.
DOI URL |
[27] |
D.O. Moskovskikh, S. Vorotilo, A.S. Sedegov, K.V. Kuskov, K.V. Bardasova, P.V. Kiryukhantsev-korneev, M. Zhukovskyi, A.S. Mukasyan, Ceram. Int. 46 (2020) 19008-19014.
DOI URL |
[28] |
J. Sure, D. Sri Maha Vishnu, H.K. Kim, C. Schwandt, Angew. Chem. Int. Ed. 59 (2020) 11830-11835.
DOI URL |
[29] |
S. Ning, T. Wen, B. Ye, Y. Chu, J. Am. Ceram. Soc. 103 (2020) 2244-2251.
DOI URL |
[30] |
Y. Zhou, T.W. Heitmannb, W.G. Fahrenholtz, G.E. Hilmas, J. Eur. Ceram. Soc. 39 (2019) 2594-2600.
DOI URL |
[31] |
Y. He, C. Peng, S. Xin, K. Li, S. Liang, X. Lu, N. Kang, H. Xue, X. Shen, T. Shen, M. Wang, J. Mater. Sci. 55 (2020) 6754-6760.
DOI URL |
[32] | C. Peng, X. Gao, M. Wang, L. Wu, X. Li, Q. Zhang, Y. Ren, F. Wang, B. Zhang, B. Gao, Q. Zou, Y. Zhao, Q. Yang, D. Tian, H. Gou, W. Yang, X. Bai, W. Mao, H.K. Mao, Appl. Phys. Lett. 114 (2019) |
[33] |
C. Peng, H. Tang, Y. He, X. Lu, P. Jia, G. Liu, Y. Zhao, M. Wang, J. Mater. Sci. Technol. 51 (2020) 161-166.
DOI URL |
[34] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 1-10.
DOI URL |
[35] | E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8 (2018) 1-12. |
[36] |
B. Ye, S. Ning, D. Liu, T. Wen, Y. Chu, J. Am. Ceram. Soc. 102 (2019) 6372-6378.
DOI URL |
[37] |
C. Gasparrini, D.S. Rana, N. Le Brun, D. Horlait, C.N. Markides, I. Farnan, W.E. Lee, Sci. Rep. 10 (2020) 1-12.
DOI URL |
[38] |
A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 38 (2018) 2318-2327.
DOI URL |
[39] |
Y. Katoh, G. Vasudevamurthy, T. Nozawa, L.L. Snead, J. Nucl. Mater. 441 (2013) 718-742.
DOI URL |
[40] |
K. Schönfeld, H.P. Martin, A. Michaelis, J. Adv. Ceram. 6 (2017) 165-175.
DOI URL |
[41] |
Y. Zhang, B. Liu, J. Wang, J. Wang, Acta Mater 111 (2016) 232-241.
DOI URL |
[42] |
Y. Zhou, W.G. Fahrenholtz, J. Graham, G.E. Hilmas, J. Mater. Sci. Technol. 82 (2021) 105-113.
DOI URL |
[43] | M.D. Hossain, T. Borman, A. Kumar, X. Chen, A. Khosravani, S.R. Kalidindi, E.A. Paisley, M. Esters, C. Oses, C. Toher, S. Curtarolo, J.M. Lebeau, D. Brenner, J.P. Maria, Acta Mater 215 (2021) |
[44] |
M. Gendre, A. Maître, G. Trolliard, J. Eur. Ceram. Soc. 31 (2011) 2377-2385.
DOI URL |
[45] |
K. Lu, J.X. Liu, X.F. Wei, W. Bao, Y. Wu, F. Li, F. Xu, G.J Zhang, J. Eur. Ceram. Soc. 40 (2020) 1839-1847.
DOI URL |
[46] |
B. Wei, L. Chen, Y. Wang, H. Zhang, S. Peng, J. Ouyang, D. Wang, Y. Zhou, J. Eur. Ceram. Soc. 38 (2018) 411-419.
DOI URL |
[47] |
Y. Xu, W. Sun, X. Xiong, F. Liu, X. Luan, J. Mater. Sci. Technol. 35 (2019) 2785-2798.
DOI URL |
[48] |
R.E. Taylor, J. Am. Ceram. Soc. 45 (1962) 74-78.
DOI URL |
[49] |
Y. Sun, H. Xiang, F.Z. Dai, X. Wang, Y. Xing, X. Zhao, Y. Zhou, J. Adv. Ceram. 10 (2021) 596-613.
DOI URL |
[50] |
X.X. Yu, G.B. Thompson, C.R. Weinberger, J. Eur. Ceram. Soc. 35 (2015) 95-103.
DOI URL |
[51] |
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 1-10.
DOI URL |
[52] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McEl-Fresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater 166 (2019) 271-280.
DOI URL |
[53] |
C. Zhao, Y. Zhou, X. Xing, S. Liu, X. Ren, Q. Yang, J. Alloys Compd. 763 (2018) 670-678.
DOI URL |
[54] |
B. Ye, T. Wen, M.C. Nguyen, L. Hao, C.Z. Wang, Y. Chu, Acta Mater 170 (2019) 15-23.
DOI URL |
[55] |
S. Jiang, L. Shao, T.W. Fan, J.M. Duan, X.T. Chen, B.Y. Tang, Ceram. Int. 46 (2020) 15104-15112.
DOI URL |
[56] | A.R. Boccaccini, J. Mater, J. Mater.Process. Technol. 65 (1997) 302-304. |
[57] |
D. Liu, Y. Hou, A. Zhang, J. Han, J. Zhang, J. Meng, H. Su, J. Eur. Ceram. Soc. 41 (2021) 7488-7497.
DOI URL |
[58] |
G. Revathi K. Vasanthakumar, S. Ariharan, S.R. Bakshi, J. Eur. Ceram. Soc. 41 (2021) 6756-6762.
DOI URL |
[59] |
S.C. Luo, W.M. Guo, Z.L. Fang, K. Plucknett, H.T. Lin, J. Eur. Ceram. Soc. 42 (2021) 336-343.
DOI URL |
[1] | Wei Fan, Yu Bai, Yanfen Liu, Taotao Li, Binmao Li, Lei Zhang, Chenmin Gao, Shiyu Shan, Haocen Han. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 107(0): 149-154. |
[2] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[3] | Ze Zhang, Shizhen Zhu, Fu-Zhi Dai, Huimin Xiang, Yanbo Liu, Ling Liu, Zhuang Ma, Shijiang Wu, Fei Liu, Kuang Sun, Yanchun Zhou. Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB2s [J]. J. Mater. Sci. Technol., 2022, 121(0): 154-162. |
[4] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[5] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[6] | Yichen Wang, Buhao Zhang, Chengyu Zhang, Jie Yin, Michael J. Reece. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C [J]. J. Mater. Sci. Technol., 2022, 113(0): 40-47. |
[7] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[8] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[9] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
[10] | Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications [J]. J. Mater. Sci. Technol., 2019, 35(12): 2778-2784. |
[11] | Zifan Zhao, Huimin Xiang, ZhiDai Fu, Zhijian Peng, Yanchun Zhou. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity [J]. J. Mater. Sci. Technol., 2019, 35(10): 2227-2231. |
[12] | Xiaojing Sha, Namin Xiao, Yongjun Guan, Xiaosu Yi. A first-principles investigation on mechanical and metallic properties of titanium carbides under pressure [J]. J. Mater. Sci. Technol., 2018, 34(10): 1953-1958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||