J. Mater. Sci. Technol. ›› 2022, Vol. 103: 215-220.DOI: 10.1016/j.jmst.2021.06.057
• Research Article • Previous Articles Next Articles
Yan Xing*(), Wenqing Dan, Yicun Fan, Xing'ao Li*(
)
Received:
2021-06-21
Revised:
2021-06-30
Accepted:
2021-06-30
Published:
2022-03-20
Online:
2021-09-20
Contact:
Yan Xing,Xing'ao Li
About author:
lixa@njupt.edu.cn (X. Li).Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method[J]. J. Mater. Sci. Technol., 2022, 103: 215-220.
Fig. 3. XRD pattern of electrospun (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers and those of Y2O3, Yb2O3, Sm2O3, Eu2O3 and Er2O3 from JCPDS cards (a), the distribution of RE elements on (400) plane of the (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 (b), and the atomic scattering factors of Y, Yb, Sm, Eu and Er as a function of sin θ/λ (c).
Elements | Z | a1 | b1 | a2 | b2 | a3 | b3 | a4 | b4 | f |
---|---|---|---|---|---|---|---|---|---|---|
Y | 39 | 4.129 | 27.548 | 3.012 | 5.088 | 1.179 | 0.591 | - | - | 31.38 |
Yb | 70 | 5.529 | 28.927 | 4.533 | 5.144 | 1.945 | 0.578 | - | - | 58.83 |
Sm | 62 | 5.255 | 28.016 | 4.113 | 5.037 | 1.743 | 0.577 | - | - | 51.66 |
Eu | 63 | 6.267 | 100.298 | 4.844 | 16.066 | 3.202 | 2.98 | 1.2 | 0.367 | 52.82 |
Er | 68 | 5.436 | 28.655 | 4.437 | 5.117 | 1.891 | 0.577 | - | - | 57.04 |
Table 1 Atomic scattering parameters for RE elements [38] used in this work.
Elements | Z | a1 | b1 | a2 | b2 | a3 | b3 | a4 | b4 | f |
---|---|---|---|---|---|---|---|---|---|---|
Y | 39 | 4.129 | 27.548 | 3.012 | 5.088 | 1.179 | 0.591 | - | - | 31.38 |
Yb | 70 | 5.529 | 28.927 | 4.533 | 5.144 | 1.945 | 0.578 | - | - | 58.83 |
Sm | 62 | 5.255 | 28.016 | 4.113 | 5.037 | 1.743 | 0.577 | - | - | 51.66 |
Eu | 63 | 6.267 | 100.298 | 4.844 | 16.066 | 3.202 | 2.98 | 1.2 | 0.367 | 52.82 |
Er | 68 | 5.436 | 28.655 | 4.437 | 5.117 | 1.891 | 0.577 | - | - | 57.04 |
[1] |
H. Xiang, Y. Xing, F.-Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[2] |
H. Chen, H. Xiang, F.-Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2404-2408.
DOI |
[3] |
Z. Zhao, H. Chen, H. Xiang, F.-Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[4] |
X. Ren, Z. Tian, J. Zhang, J. Wang, Scr. Mater. 168 (2019) 47-50.
DOI URL |
[5] |
C.H. Lin, J.G. Duh, Surf. Coat. Technol. 203 (2008) 558-561.
DOI URL |
[6] |
H. Zhang, B. Zhao, F.Z. Dai, H.M. Xiang, Y.C. Zhou, J. Mater. Sci. Technol. 77 (2021) 58-65.
DOI URL |
[7] |
Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, S.S. Bhattacharya, T. Bergfeldt, A. Düvel, P. Heitjans, T. Brezesinski, H. Hahn, B. Breitung, Energy Environ. Sci. 12 (2019) 2433-2442.
DOI URL |
[8] |
A.J. Wright, J. Luo, J. Mater. Sci. 55 (2020) 9812-9827.
DOI URL |
[9] |
C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5 (2020) 295-309.
DOI URL |
[10] |
R.-Z. Zhang, M.J. Reece, J. Mater. Chem. A 7 (2019) 22148-22162.
DOI URL |
[11] |
S.H. Albedwawi, A. Aljaberi, G.N. Haidemenopoulos, K. Polychronopoulou, Mater. Des. 202 (2021) 109534.
DOI URL |
[12] |
T. Li, Y. Yao, Z. Huang, P. Xie, Z. Liu, M. Yang, J. Gao, K. Zeng, A.H. Brozena, G. Pastel, M. Jiao, Q. Dong, J. Dai, S. Li, H. Zong, M. Chi, J. Luo, Y. Mo, G. Wang, C. Wang, R. Shahbazian-Yassar, L. Hu, Nat. Catal. 4 (2021) 62-70.
DOI URL |
[13] |
G. Zhang, I. Milisavljevic, E. Zych, Y. Wu, Scr. Mater. 186 (2020) 19-23.
DOI URL |
[14] |
J. Dabrowa, M. Stygar, A. Mikula, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Mater. Lett. 216 (2017) 32-36.
DOI URL |
[15] |
Y.C. Liu, D.C. Jia, Y. Zhou, Y.C. Zhou, J.L. Zhao, H.Q. Nian, B. Liu, J. Eur. Ceram. Soc. 40 (2020) 6272-6277.
DOI URL |
[16] | F. Vayer, C. Decorse, D. Bérardan, N. Dragoe, J. Alloys Compd. (2021) 160773. |
[17] |
J. Wang, F. Wu, R. Zou, Y. Wu, M. Gan, J. Feng, X. Chong, J. Am. Ceram. Soc. 104 (2021) 5873-5882.
DOI URL |
[18] |
Y. Sun, H. Xiang, F.-Z. Dai, X. Wang, Y. Xing, X. Zhao, Y. Zhou, J. Adv. Ceram. 10 (2021) 596-613.
DOI URL |
[19] |
L. Sun, Y. Luo, X. Ren, Z.H. Gao, J. Wang, Mater. Res. Lett. 8 (2020) 424-430.
DOI URL |
[20] |
T. Giovanna, L. Roberta, G. Sebastiano, O. Roberto, G. Cao, Scr. Mater. 158 (2019) 100-104.
DOI URL |
[21] |
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Dje-nadic, Dalton Trans. 46 (2017) 12167-12176.
DOI URL |
[22] |
S. Abhishek, V. Leonardo, D. Wang, Q. Wang, T. Gopichand, D.B. Lea, K. Chris-tian, B. Torsten, S.S. Bhattacharya, H. Horst, Nat. Commun. 9 (2018) 3400.
DOI PMID |
[23] |
Z. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896.
DOI URL |
[24] |
Z.F. Zhao, H.M. Xiang, H. Chen, F.Z. Dai, X.H. Wang, Z. Peng, Y.C. Zhou, J. Adv. Ceram. 9 (2020) 595-605.
DOI URL |
[25] |
Y. Dong, K. Ren, Y.H. Lu, Q.K. Wang, J. Liu, Y.G. Wang, J. Eur. Ceram. Soc. 39 (2019) 2574-2579.
DOI |
[26] |
A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 38 (2017) 2318-2327.
DOI URL |
[27] |
B. Du, H.H. Liu, Y.H. Chu, J. Am. Ceram. Soc. 103 (2020) 4063-4068.
DOI URL |
[28] |
W. Pan, H. Wu, D.D. Lin, W. Zhang, Curr. Org. Chem. 17 (2013) 1371-1381.
DOI URL |
[29] |
Y. Xing, J. Cheng, J. Wu, M. Zhang, X.A. Li, W. Pan, J. Mater. Sci. Technol. 45 (2020) 84-91.
DOI |
[30] |
Y. Xing, J. Cheng, M. Zhang, M. Zhao, L. Ye, W. Pan, ACS Appl. Mater. Interfaces 10 (2018) 43723-43729.
DOI URL |
[31] |
W. Liu, W. Pan, J. Luo, A. Godfrey, G. Ou, H. Wu, W. Zhang, Nat. Commun. 6 (2015) 8354.
DOI URL |
[32] |
J. Cheng, Y. Wang, Y. Xing, M. Shahid, W. Pan, Appl. Catal. B 209 (2017) 53-61.
DOI URL |
[33] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL |
[34] |
Y. Zhang, T.T. Zuo, T. Zhi, C.G. Michael, A.D. Karin, K.L. Peter, P.L. Zhao, Prog. Mater Sci. 61 (2014) 1-93.
DOI URL |
[35] | W.H. Bragg, W.L. Bragg, Bragg’s Law, Basic Books, 1966. |
[36] | L. Elbert Alexander, X-ray Diffraction Procedures for Polycrystalline and Amor- phous Materials, John Wiley & Sons, Inc, 1974. |
[37] |
J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[38] | M.d. Graef, M.E. Mchenry, Structure of Materials, second ed., Cambridge Uni-versity Press, 2012. |
[39] |
Y. Qin, J.X. Liu, F. Li, X. Wei, H.Z. Wu, G.J. Zhang, J. Adv. Ceram. 8 (2019) 148-152.
DOI URL |
[40] |
B. Miracle, S. ON, Acta Mater 122 (2017) 448-511.
DOI URL |
[41] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[42] |
S.C. Jiang, T. Hu, J. Gild, N.X. Zhou, J.Y. Nie, M.D. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142 (2018) 116-120.
DOI URL |
[43] |
D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Acta Mater 104 (2016) 172-179.
DOI URL |
[1] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[2] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[3] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[4] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[5] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[6] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
[7] | Yuchao Lyu, Weilong Zhan, Zhumo Yu, Xinmei Liu, , Xiaoxing Wang, Chunshan Song, Zifeng Yan. One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst [J]. J. Mater. Sci. Technol., 2021, 76(0): 86-94. |
[8] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
[9] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
[10] | Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria [J]. J. Mater. Sci. Technol., 2021, 78(0): 131-143. |
[11] | Wencheng Liang, Mingli Jiang, Junyong Zhang, Xiaoming Dou, Yan Zhou, Yun Jiang, Li Zhao, Meidong Lang. Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing [J]. J. Mater. Sci. Technol., 2021, 89(0): 225-232. |
[12] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[13] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[14] | Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design [J]. J. Mater. Sci. Technol., 2021, 74(0): 189-202. |
[15] | Yameng Yin, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen, Qinyou An. Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 83-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||