J. Mater. Sci. Technol. ›› 2021, Vol. 74: 189-202.DOI: 10.1016/j.jmst.2020.10.015
• Invited Review • Previous Articles Next Articles
Yongliang Li1, Hua Yuan1, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan*()
Received:
2020-07-17
Revised:
2020-08-04
Accepted:
2020-08-06
Published:
2021-05-30
Online:
2020-10-08
Contact:
Yeqiang Tan
About author:
*E-mail address: tanyeqiang@qdu.edu.cn (Y. Tan).1These authors contributed equally to this work.
Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design[J]. J. Mater. Sci. Technol., 2021, 74: 189-202.
Fig. 2. (a) Schematic configuration of electrospinning equipment [30]. (b) TEM images of the porous nanofibers by heating the TEOS/PAN composite nanofibers at 1200 °C in Ar/H2 atmosphere followed removing the Silica (SiO2) nanoparticles by HF solution [33]. (c) TEM and SEM images of hollow nanofibers, which were obtained by pyrolysis in air to remove the heavy mineral oil core in the TiO2-PVP nanofiber sheath [34]. (d) SEM image of the core/shell nanofiber of carbon shell and nanowire core [35]. (e) SEM and (f) TEM images of multichannel nanofiber by carbonizing multicore polymer nanofibers: PAN and poly methyl methacrylate (PMMA) [36].
Fig. 3. (a) Schematic configuration of thermal CVD process. (b) Schematic illustration of a CVD using hydrogen and methane as carbon sources [39]. (c) TEM of lattice image in the external part of the as-grown fiber; and (d) lattice image in the external part of the graphitized fiber [37].
Catalysts | Type of CNFs | Diameter of CNFs (nm) |
---|---|---|
Fe | Amorphous | ~25 |
Co | Highly graphitic | 30-200 |
Ni | Amorphous | 25-140 |
Pt | Partially graphitic | ~80 |
Ru | Highly graphitic | ~7 |
Rh | Amorphous | ~40 |
Table 1 Correlation between the metal catalyst particles and crystallinity of CNFs produced at spreading temperature in CVD [39].
Catalysts | Type of CNFs | Diameter of CNFs (nm) |
---|---|---|
Fe | Amorphous | ~25 |
Co | Highly graphitic | 30-200 |
Ni | Amorphous | 25-140 |
Pt | Partially graphitic | ~80 |
Ru | Highly graphitic | ~7 |
Rh | Amorphous | ~40 |
Fig. 4. (a) Schematic illustration of synthetic the hollow CNFs by confined template method [45]. (b) Preparation process of TiO2@N-C@MoS2. (c)TEM images of the hierarchical tubular nanostructure of TiO2@N-C@MoS2 [46].
Fig. 5. (a) Preparation process of S/HPCF. SiO2 was used as porogens to form the mesopores and the micropores were produced via KOH activation [22]. (b) TEM images of CNTs@CNFs. (c) HRTEM, TEM images and SAED pattern of Ni@CNTs@CNFs [71]. (d) Preparation process of Meso-HACNF [75].
Fig. 6. (a) The synthesis process and structure of P@N-PHCNF and P/N-HCNF. (b) Schematic diagram of the potassiation/depotassiation process. (c) P - C chemical bonds and N-doped with enhanced adsorption energy for red P facilitate K+ diffusion and charge transfer [105]. The HRTEM images and lattice distance of (d) CNFs and (e) S-CNFs [106]. (f) The chemical model of B-N-F triply doped PCNFs. (g, h) The SEM images of the fresh electrode and after 50 cycles [107].
Fig. 7. (a) Elemental mapping images of TiN@CNFs. (b) SEM images of bare CNFs. (c) SEM images of TiN@CNFs (inset: HRTEM images) [114]. (d) Schematic illustration of the Li deposition occurring on bare Li foil and Co@CNFs [77]. (e) The transportation path of electrons and Na+ in TiO2 nanofibers [117]. (f) The synthesis processes for Sb@CNFs. In-situ TEM images of single Sb@CNF during (g) first potassiation and (h) first depotassiation [122].
Fig. 8. (a) Schematic illustration of Ni-CNFs-CNTs manufacturing process [131]. (b) Schematic illustration of porous hollow CNTs@CNFs nanostructure [71].
Fig. 9. (a) Schematic synthesis of the free-standing nanofiber mat [138]. (b) The cross-sectional image of H-SPAN nanofiber. (c) SEM image of H-SPAN nanofiber [73]. (d) Schematics diagram Li deposition on bare Cu foil and polymer nanofibers [141].
Materials | Electrodes | Electrochemical performance |
---|---|---|
CNFs [ | S cathode | 760 mA·h g-1 after 50 cycles at 0.15 mA cm-2 |
PCNFs [ | S cathode | 809.1 mA h g-1 after 300 cycles at 0.5 C |
N-doped PCNFs [ | S cathode | 830 mA·h g-1 after 300 cycles at 0.5 C |
Freestanding CNFs [ | S cathode | 1000 mA h g-1 after 50 cycles at 100 mA g-1 |
SPAN-VGCF [ | S cathode | 903 mA h g-1 after 150 cycles at 1 C |
TiO2/TiOxNy-CNFs [ | S cathode | 1107 mA h g-1 after 100 cycles at 1 C |
Oxidized PAN [ | Li metal anode | 1 mAh cm-2 and CE of 97.4% after 120 cycles at 3 mA cm-2 |
N-doped CNFs [ | Li metal anode | 2 mAh cm-2 and CE of 97% after 120 cycles at 2 mA cm-2 |
Ni@CNFs [ | Li metal anode | 1 mAh cm-2 after 500 cycles at 0.5 mA cm-2 |
CoNi@NPCNFs [ | Li metal anodeS cathode | 2 mAh cm-2 after 250 cycles at 1 mA cm-2828 mA·h g -1 after 1200 cycles at 5 C |
CNFs [ | LIBs anode | 450 mA·h g-1 at 30 mA g-1 |
N-doped CNFs [ | LIBs anode | 529 mA·h g-1 after 50 cycles at 30 mA g-1 |
CNTs/RGO nanofiber [ | LIBs anode | 374 mA·h g-1 after 800 cycles at 500 mA g-1 |
Sn@C-HCNFs [ | LIBs anode | 737 mA h g-1 after 200 cycles at 0.5 C |
Si@C-HCNFs [ | LIBs anode | 1601 mA h g-1 after 50 cycles at 50 mA g-1 |
MnO/CNFs [ | LIBs anode | 844 mA·h g-1 after 800 cycles at 1 A g-1 |
CNFs [ | SIBs anode | 176 mA h g-1 after 600 cycles at 200 mA g-1 |
N-doped PCNFs [ | SIBs anode | 217 mA h g-1 after 10,000 cycles at 2 A g-1 |
Graphene/CNFs [ | SIBs anode | 432 mA·h g-1 after 100 cycles at 100 mA g-1 |
Red P@PCNFs [ | SIBs anode | 700 mA h g-1 after 920 cycles at 2 A g-1 |
MoS2@PCNFs [ | LIBs anodeSIBs anode | 1222 mA·h g-1 after 1000 cycles at 1 A g-1477 mA h g -1 after 1000 cycles at 1 A g-1 |
PCNFs [ | PIBs anode | 210 mA·h g-1 after 1200 cycles at 200 mA g-1 |
N-doped CNFs [ | PIBs anode | 170 mA·h g-1 after 1900 cycles at 1 C |
Sn4P3@NCNFs [ | PIBs anode | 403 mA h g-1 after 200 cycles at 50 mA g-1 |
Table 2 Nanofiber host materials for different electrodes.
Materials | Electrodes | Electrochemical performance |
---|---|---|
CNFs [ | S cathode | 760 mA·h g-1 after 50 cycles at 0.15 mA cm-2 |
PCNFs [ | S cathode | 809.1 mA h g-1 after 300 cycles at 0.5 C |
N-doped PCNFs [ | S cathode | 830 mA·h g-1 after 300 cycles at 0.5 C |
Freestanding CNFs [ | S cathode | 1000 mA h g-1 after 50 cycles at 100 mA g-1 |
SPAN-VGCF [ | S cathode | 903 mA h g-1 after 150 cycles at 1 C |
TiO2/TiOxNy-CNFs [ | S cathode | 1107 mA h g-1 after 100 cycles at 1 C |
Oxidized PAN [ | Li metal anode | 1 mAh cm-2 and CE of 97.4% after 120 cycles at 3 mA cm-2 |
N-doped CNFs [ | Li metal anode | 2 mAh cm-2 and CE of 97% after 120 cycles at 2 mA cm-2 |
Ni@CNFs [ | Li metal anode | 1 mAh cm-2 after 500 cycles at 0.5 mA cm-2 |
CoNi@NPCNFs [ | Li metal anodeS cathode | 2 mAh cm-2 after 250 cycles at 1 mA cm-2828 mA·h g -1 after 1200 cycles at 5 C |
CNFs [ | LIBs anode | 450 mA·h g-1 at 30 mA g-1 |
N-doped CNFs [ | LIBs anode | 529 mA·h g-1 after 50 cycles at 30 mA g-1 |
CNTs/RGO nanofiber [ | LIBs anode | 374 mA·h g-1 after 800 cycles at 500 mA g-1 |
Sn@C-HCNFs [ | LIBs anode | 737 mA h g-1 after 200 cycles at 0.5 C |
Si@C-HCNFs [ | LIBs anode | 1601 mA h g-1 after 50 cycles at 50 mA g-1 |
MnO/CNFs [ | LIBs anode | 844 mA·h g-1 after 800 cycles at 1 A g-1 |
CNFs [ | SIBs anode | 176 mA h g-1 after 600 cycles at 200 mA g-1 |
N-doped PCNFs [ | SIBs anode | 217 mA h g-1 after 10,000 cycles at 2 A g-1 |
Graphene/CNFs [ | SIBs anode | 432 mA·h g-1 after 100 cycles at 100 mA g-1 |
Red P@PCNFs [ | SIBs anode | 700 mA h g-1 after 920 cycles at 2 A g-1 |
MoS2@PCNFs [ | LIBs anodeSIBs anode | 1222 mA·h g-1 after 1000 cycles at 1 A g-1477 mA h g -1 after 1000 cycles at 1 A g-1 |
PCNFs [ | PIBs anode | 210 mA·h g-1 after 1200 cycles at 200 mA g-1 |
N-doped CNFs [ | PIBs anode | 170 mA·h g-1 after 1900 cycles at 1 C |
Sn4P3@NCNFs [ | PIBs anode | 403 mA h g-1 after 200 cycles at 50 mA g-1 |
[1] |
P. Zhang, Q. Ru, H. Yan, X. Hou, F. Chen, S. Hu, L. Zhao, J. Mater. Sci. Technol. 35 (2019) 1840-1850.
DOI |
[2] |
Z. Zou, C. Jiang, J. Mater. Sci. Technol. 35 (2019) 644-650.
DOI URL |
[3] |
B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Prog. Mater. Sci. 76 (2016) 319-380.
DOI URL |
[4] |
Y.M. Manawi, Ihsanullah, A. Samara, T. Al-Ansari, M.A. Atieh, Materials 11 (2018) 822-857.
DOI URL |
[5] |
Y. Wang, Y. Yu, Y. Tan, T. Li, Y. Chen, S. Wang, K. Sui, H. Zhang, Y. Luo, X. Li, Adv. Energy Mater. 10 (2019) 1903233.
DOI URL |
[6] | D. Chen, H. Tan, X. Rui, Q. Zhang, Y. Feng, H. Geng, C. Li, S. Huang, Y. Yu, Info Mat 1 (2019) 251-259. |
[7] |
X.Y. Zhang, X.J. Li, F.Y. Jiang, W. Du, C.X. Hou, Z.Y. Xu, L.W. Zhu, Z.K. Wang, H. Liu, W.J. Zhou, H. Yuan, Dalton Trans. 49 (2020) 1794-1802.
DOI URL |
[8] |
Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen, J.Q. Huang, Q. Zhang, InfoMat 2 (2020) 379-388.
DOI URL |
[9] |
Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, InfoMat 2 (2020) 483-508.
DOI URL |
[10] |
Y. Wang, X. Wen, J. Chen, S. Wang, J. Power Sources 281 (2015) 285-292.
DOI URL |
[11] |
X. Liu, Z. Xiao, C. Lai, S. Zou, M. Zhang, K. Liu, Y. Yin, T. Liang, Z. Wu, J. Mater. Sci. Technol. 48 (2020) 84-91.
DOI URL |
[12] |
J. Bai, X. Chen, E. Olsson, H. Wu, S. Wang, Q. Cai, C. Feng, J. Mater. Sci. Technol. 50 (2020) 92-102.
DOI URL |
[13] |
H. Xu, G. Zhu, B. Hao, J. Mater. Sci. Technol. 35 (2019) 100-108.
DOI URL |
[14] |
Z. Wang, Q. Gao, P. Lv, X. Li, X. Wang, B. Qu, J. Mater. Sci. Technol. 38 (2020) 119-124.
DOI URL |
[15] |
Y. Zheng, B. Liu, P. Cao, H. Huang, J. Zhang, G. Zhou, J. Mater. Sci. Technol. 35 (2019) 667-673.
DOI URL |
[16] | J. Ju, L. Hao, S. Yang, D. Wang, Y. Zhang, H. Yuan, X. Yin, Y. Tan, Adv. Funct. Mater. (2020), 2006544. |
[17] |
J. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710-23725.
DOI URL |
[18] |
X. Tian, Q. Xu, L. Cheng, L. Meng, H. Zhang, X. Jia, S. Bai, Y. Qin, ACS Appl. Mater. Interfaces 12 (2020) 27219-27225.
DOI URL |
[19] |
X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M. Yuen, J.K. Kim, Compos. Sci. Technol. 72 (2012) 121-144.
DOI URL |
[20] |
J.H. Lee, G.S. Kim, Y.M. Choi, W.I. Park, J.A. Rogers, U. Paik, J. Power Sources 184 (2008) 308-311.
DOI URL |
[21] |
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9 (2010) 146-151.
DOI PMID |
[22] |
Z. Gong, Q. Wu, F. Wang, X. Li, X. Fan, H. Yang, Z. Luo, RSC Adv. 6 (2016) 37443-37451.
DOI URL |
[23] |
R. Li, H. Zhang, Q. Zheng, X. Li, J. Mater. Chem. A 8 (2020) 5186-5193.
DOI URL |
[24] |
D. Nan, J.-G. Wang, Z.-H. Huang, L. Wang, W. Shen, F. Kang, Electrochem. Commun. 34 (2013) 52-55.
DOI URL |
[25] |
M. Winter, R. Brodd, Chem. Rev. 104 (2004) 4245-4269.
DOI URL |
[26] |
C. Du, C. Gao, G. Yin, M. Chen, L. Wang, Energy Environ. Sci. 4 (2011) 1037-1042.
DOI URL |
[27] |
D. Xu, Z. Huang, R. Miao, Y. Bie, J. Yang, Y. Yao, S. Che, J. Mater. Chem. A 2 (2014) 19855-19860.
DOI URL |
[28] |
T. Jin, Q. Han, Y. Wang, L. Jiao, Small 14 (2018), 1703086.
DOI URL |
[29] |
J. Ju, Y. Ma, P. Qi, Q. Wang, L. Hao, R. Wang, K. Sui, Y. Tan, Compos. Part B-Eng. 162 (2019) 671-677.
DOI URL |
[30] |
J. Xue, J. Xie, W. Liu, Y. Xia, Acc. Chem. Res. 50 (2017) 1976-1987.
DOI URL |
[31] |
T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Nano Lett. 12 (2012) 802-807.
DOI URL |
[32] |
Z. Li, J.T. Zhang, Y.M. Chen, J. Li, X.W. Lou, Nat. Commun. 6 (2015) 8850.
DOI URL |
[33] |
Y. Sun, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao, H. Xu, W. Luo, H. Jin, Y. Xin, T. Li, Z. Zhang, J. Zhou, W. Cai, Y. Huang, Y. Cui, Nano Lett. 15 (2015) 3899-3906.
DOI URL |
[34] |
D. Li, Y. Xia, Nano Lett. 4 (2004) 933-938.
DOI URL |
[35] |
H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song, L. Jiang, Langmuir 26 (2010) 11291-11296.
DOI URL |
[36] |
J.S. Lee, W. Kim, J. Jang, A. Manthiram, Adv. Energy Mater. 7 (2017), 1601943.
DOI URL |
[37] |
L. Chen, Z. Li, G. Li, M. Zhou, B. He, J. Ouyang, W. Xu, W. Wang, Z. Hou, J. Mater. Sci. Technol. 44 (2020) 229-236.
DOI URL |
[38] |
R. Kuriger, M. Alam, Polym. Compos. 22 (2001) 604-612.
DOI URL |
[39] |
W. Lu, T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasem, M. Fan, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 13863-13881.
DOI URL |
[40] |
C.H. Cui, H.H. Li, S.H. Yu, Chem. Commun. 46 (2010) 940-942.
DOI URL |
[41] |
R. Liu, J. Duay, S.B. Lee, ACS Nano 5 (2011) 5608-5619.
DOI URL |
[42] |
Y. Xu, M. Zhou, C. Zhang, C. Wang, L. Liang, Y. Fang, M. Wu, L. Cheng, Y. Lei, Nano Energy 38 (2017) 304-312.
DOI URL |
[43] |
L. Wen, Z. Wang, Y. Mi, R. Xu, S.H. Yu, Y. Lei, Small 11 (2015) 3408-3428.
DOI URL |
[44] |
Q. Wei, Y. Fu, G. Zhang, D. Yang, G. Meng, S. Sun, Nano Energy 55 (2019) 234-259.
DOI URL |
[45] |
G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett. 11 (2011) 4462-4467.
DOI URL |
[46] |
S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Adv. Mater. 29 (2017), 1702724.
DOI URL |
[47] |
X. Li, J. Wang, InfoMat 2 (2019) 3-32.
DOI URL |
[48] |
S. Liu, S. Zhao, Y. Yao, P. Dong, C. Yang, J. Mater. Sci. Technol. 30 (2014) 466-472.
DOI URL |
[49] |
A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 114 (2014) 11751-11787.
DOI URL |
[50] |
Z.L. Xu, J.Q. Huang, W.G. Chong, X. Qin, X. Wang, L. Zhou, J.K. Kim, Adv. Energy Mater. 7 (2017), 1602078.
DOI URL |
[51] |
J.H. Kim, Y.H. Lee, S.J. Cho, J.G. Gwon, H.J. Cho, M. Jang, S.Y. Lee, S.Y. Lee, Energy Environ. Sci. 12 (2019) 177-186.
DOI URL |
[52] |
C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv. Funct. Mater. 16 (2006) 2393-2397.
DOI URL |
[53] |
S.X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, ACS Appl. Mater. Interfaces 5 (2013) 12275-12282.
DOI URL |
[54] |
D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A803-A811.
DOI URL |
[55] |
S.H. Wang, Y.X. Yin, T.T. Zuo, W. Dong, J.Y. Li, J.L. Shi, C.H. Zhang, N.W. Li, C.J. Li, Y.G. Guo, Adv. Mater. 29 (2017), 1703729.
DOI URL |
[56] |
C. Brissot, M. Rosso, J. Chazalviel, P. Baudry, S. Lascaud, Electrochim. Acta 43 (1998) 1569-1574.
DOI URL |
[57] | M. Rosso, T. Gobron, C. Brissot, J. Chazalviel, S. Lascaud, J. Power Sources 97-8 (2001) 804-806. |
[58] |
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Energy Environ. Sci. 7 (2014) 513-537.
DOI URL |
[59] |
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, J. Am. Chem. Soc. 135 (2013) 4450-4456.
DOI URL |
[60] |
Z. Lu, S. Liu, C. Li, J. Huang, D. Wu, R. Fu, Chem. Commun. 55 (2019) 6034-6037.
DOI URL |
[61] |
R. Zhang, X.B. Cheng, C.Z. Zhao, H.J. Peng, J.L. Shi, J.Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 28 (2016) 2155-2162.
DOI URL |
[62] |
X. Lin, G. Xie, S. Liu, M.R. Martinez, Z. Wang, H. Lou, R. Fu, D. Wu, K. Matyjaszewski, ACS Appl. Mater. Interfaces 11 (2019) 18763-18769.
DOI URL |
[63] |
Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.H. Yang, Adv. Mater. 28 (2016) 6932-6939.
DOI URL |
[64] |
C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Nat. Commun. 6 (2015) 8058.
DOI URL |
[65] |
H. Wu, Y. Zhang, Y. Deng, Z. Huang, C. Zhang, Y.-B. He, W. Lv, Q.-H. Yang, Sci. China Mater. 62 (2018) 87-94.
DOI URL |
[66] |
X. Zhang, Electrochem. Commun. 11 (2009) 684-687.
DOI URL |
[67] |
C. Zheng, S. Niu, W. Lv, G. Zhou, J. Li, S. Fan, Y. Deng, Z. Pan, B. Li, F. Kang, Q.H. Yang, Nano Energy 33 (2017) 306-312.
DOI URL |
[68] |
Y. Yu, Q. Yang, D. Teng, X. Yang, S. Ryu, Electrochem. Commun. 12 (2010) 1187-1190.
DOI URL |
[69] |
S. Lu, Y. Chen, X. Wu, Z. Wang, L. Lv, W. Qin, L. Jiang, RSC Adv. 4 (2014) 18052-18054.
DOI URL |
[70] |
B. Zhang, Z.L. Xu, Y.B. He, S. Abouali, M. Akbari Garakani, E. Kamali Heidari, F. Kang, J.-K. Kim, Nano Energy 4 (2014) 88-96.
DOI URL |
[71] |
Y. Chen, X. Li, K.S. Park, J. Hong, J. Song, L. Zhou, Y.W. Mai, H. Huang, J.B. Goodenough, J. Mater. Chem. A 2 (2014) 10126-10130.
DOI URL |
[72] |
L. Ji, X. Zhang, Nanotechnology 20 (2009) 155705-155711.
DOI URL |
[73] |
X. Huang, J. Liu, Z. Huang, X. Ke, L. Liu, N. Wang, J. Liu, Z. Guo, Y. Yang, Z. Shi, Electrochim. Acta 333 (2020), 135493.
DOI URL |
[74] |
Y. Yu, L. Gu, C. Zhu, P.A.V. Aken, J. Maier, J. Am. Chem. Soc. 131 (2009) 15984-15985.
DOI URL |
[75] |
S.H. Park, B.-K. Kim, W.J. Lee, J. Power Sources 239 (2013) 122-127.
DOI URL |
[76] | H. Pan, Z. Cheng, J. Chen, R. Wang, X. Li, Energy Storage Mater. 27 (2020) 435-442. |
[77] |
M. Shu, X. Li, L. Duan, M. Zhu, X. Xin, Nanoscale 12 (2020) 8819-8827.
DOI URL |
[78] |
B. Zhang, Y. Yu, Z.L. Xu, S. Abouali, M. Akbari, Y.B. He, F. Kang, J.K. Kim, Adv. Energy Mater. 4 (2014), 1301448.
DOI URL |
[79] | L. Feng, K.Z. Li, J.H. Lu, L.H. Qi, J. Mater. Sci. Technol. 33 (2017) 65-70. |
[80] |
G.B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y.F. Shi, H.J. Quan, Carbon 42 (2004) 635-640.
DOI URL |
[81] |
T. Zhou, J. Shen, Z. Wang, J. Liu, R. Hu, L. Ouyang, Y. Feng, H. Liu, Y. Yu, M. Zhu, Adv. Funct. Mater. 30 (2020), 1909159.
DOI URL |
[82] |
T. Wang, H. Wang, Sci. Sin. Chim. 49 (2019) 729-740.
DOI URL |
[83] |
D. Liu, L. Yang, Z. Chen, G. Zou, H. Hou, J. Hu, X. Ji, Sci. Bull. 65 (2020) 1003-1012.
DOI URL |
[84] |
M. Chen, T. Le, Y. Zhou, F. Kang, Y. Yang, ACS Appl. Energy Mater. 3 (2020) 1653-1664.
DOI URL |
[85] |
W. Cha, I.Y. Kim, J.M. Lee, S. Kim, K. Ramadass, K. Gopalakrishnan, S. Premkumar, S. Umapathy, A. Vinu, ACS Appl. Mater. Interfaces 11 (2019) 27192-27199.
DOI URL |
[86] |
Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu, R. Hu, L. Yang, Y. Feng, J. Liu, Z. Shi, L. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 31 (2019), 1902228.
DOI URL |
[87] |
S. Yao, R. Guo, F. Xie, Z. Wu, K. Gao, C. Zhang, X. Shen, T. Li, S. Qin, Electrochim. Acta 337 (2020), 135765.
DOI URL |
[88] | H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan, L. Wang, J. Zhong, H. Deng, J. Zhu, B. Lu, Nano-Micro Lett. 12 (2020) 113-125. |
[89] |
Y. Chen, W. Zhang, Z. Zhu, L. Zhang, J. Yang, H. Chen, B. Zheng, S. Li, W. Zhang, J. Wu, F. Huo, J. Mater. Chem. A 8 (2020) 7184-7191.
DOI URL |
[90] |
M. Wang, Y. Yang, Z. Yang, L. Gu, Q. Chen, Y. Yu, Adv. Sci. 4 (2017), 1600468.
DOI PMID |
[91] |
X. Zhang, L. Huang, Q. Shen, X. Zhou, Y. Chen, ACS Appl. Mater. Interfaces 11 (2019) 45612-45620.
DOI URL |
[92] |
Q. Zhang, F. Luo, Y. Ling, S. Xiao, M. Li, K. Qu, Y. Wang, J. Xu, W. Cai, Z. Yang, J. Mater. Chem. A 8 (2020) 8430-8439.
DOI URL |
[93] |
W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, J. Mater. Chem. A 3 (2015) 15190-15201.
DOI URL |
[94] |
L. Wang, W. Guo, P. Lu, T. Zhang, F. Hou, J. Liang, Front. Chem. 7 (2019) 832.
DOI PMID |
[95] |
J. Tan, D. Li, Y. Liu, P. Zhang, Z. Qu, Y. Yan, H. Hu, H. Cheng, J. Zhang, M. Dong, C. Wang, J. Fan, Z. Li, Z. Guo, M. Liu, J. Mater. Chem. A 8 (2020) 7980-7990.
DOI URL |
[96] |
S. Jiang, Y. Wang, Ceram. Int. 45 (2019) 11600-11606.
DOI URL |
[97] |
W. Zhang, W. Miao, X. Liu, L. Li, Z. Yu, Q. Zhang, J. Alloys. Compd. 769 (2018) 141-148.
DOI URL |
[98] |
Z. Du, W. Ai, C. Yu, Y. Gong, R. Chen, G. Sun, W. Huang, Sci. China Mater. 63 (2019) 55-61.
DOI URL |
[99] |
Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin, S. Gu, Z. Li, W. Luo, Z. Lu, ACS Nano 13 (2019) 9247-9258.
DOI URL |
[100] |
F. Wu, R. Dong, Y. Bai, Y. Li, G. Chen, Z. Wang, C. Wu, ACS Appl. Mater. Interfaces 10 (2018) 21335-21342.
DOI URL |
[101] |
Y. Zhang, L. Li, Y. Xiang, G. Zou, H. Hou, W. Deng, X. Ji, ACS Appl. Mater. Interfaces 12 (2020) 30431-30437.
DOI URL |
[102] |
Y. Cheng, Z. Wang, L. Chang, S. Wang, Q. Sun, Z. Yi, L. Wang, ACS Appl. Mater. Interfaces 12 (2020) 25786-25797.
DOI URL |
[103] |
J. Zhang, J. He, H. Zheng, R. Li, X. Gou, J. Mater. Sci. 55 (2020) 7464-7476.
DOI URL |
[104] | C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, Small 15 (2019), 1900816. |
[105] |
Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng, Q. Zhang, Y. Yu, Nano Lett. 19 (2019) 1351-1358.
DOI URL |
[106] |
Q. Jin, W. Li, K. Wang, P. Feng, H. Li, T. Gu, M. Zhou, W. Wang, S. Cheng, K. Jiang, J. Mater. Chem. A 7 (2019) 10239-10245.
DOI URL |
[107] |
J. Yan, K. Dong, Y. Zhang, X. Wang, A.A. Aboalhassan, J. Yu, B. Ding, Nat. Commun. 10 (2019) 5584.
DOI URL |
[108] |
D. Cai, B. Liu, D. Zhu, D. Chen, M. Lu, J. Cao, Y. Wang, W. Huang, Y. Shao, H. Tu, W. Han, Adv. Energy Mater. 10 (2020), 1904273.
DOI URL |
[109] |
Y. Liu, S. Zhang, X. Qin, F. Kang, G. Chen, B. Li, Nano Lett. 19 (2019) 4601-4607.
DOI URL |
[110] |
C. Guo, H. Yang, A. Naveed, Y. Nuli, J. Yang, Y. Cao, H. Yang, J. Wang, Chem. Commun. 54 (2018) 8347-8350.
DOI URL |
[111] |
W. Jia, T. Chen, Y. Wang, S. Qu, Z. Yao, Y. Liu, Y. Yin, W. Zou, F. Zhou, J. Li, Electrochim. Acta 309 (2019) 460-468.
DOI URL |
[112] | T.S. Wang, X. Liu, Y. Wang, L.Z. Fan, Adv. Funct. Mater. (2020), 2001973. |
[113] | Y.Q. Feng, Z.J. Zheng, C.Y. Wang, Y.X. Yin, H. Ye, F.F. Cao, Y.G. Guo, NanoEnergy 73 (2020), 104731. |
[114] |
K. Lin, X. Qin, M. Liu, X. Xu, G. Liang, J. Wu, F. Kang, G. Chen, B. Li, Adv. Funct. Mater. 29 (2019), 1903229.
DOI URL |
[115] |
Y. He, M. Li, Y. Zhang, Z. Shan, Y. Zhao, J. Li, G. Liu, C. Liang, Z. Bakenov, Q. Li, Adv. Funct. Mater. 30 (2020), 2000613.
DOI URL |
[116] |
S. Yao, C. Zhang, F. Xie, S. Xue, K. Gao, R. Guo, X. Shen, T. Li, S. Qin, ACS Sustain. Chem. Eng. 8 (2020) 2707-2715.
DOI URL |
[117] |
Y. Wu, Y. Jiang, J. Shi, L. Gu, Y. Yu, Small 13 (2017), 1700129.
DOI URL |
[118] | L. Wu, J.O. Yang, S. Guo, L. Yao, H. Li, S. Zhang, H. Yue, K. Cai, C. Zhang, C. Yang, Y. Cao, Adv. Funct. Mater. (2020), 2001718. |
[119] |
I. Sultana, M.M. Rahman, Y. Chen, A.M. Glushenkov, Adv. Funct. Mater. 28 (2018), 1703857.
DOI URL |
[120] |
A. Eftekhari, Z. Jian, X. Ji, ACS Appl. Mater. Interfaces 9 (2017) 4404-4419.
DOI URL |
[121] |
Q. Wang, X. Zhao, C. Ni, H. Tian, J. Li, Z. Zhang, S.X. Mao, J. Wang, Y. Xu, J. Phys. Chem. C 121 (2017) 12652-12657.
DOI URL |
[122] |
H. Huang, J. Wang, X. Yang, R. Hu, J. Liu, L. Zhang, M. Zhu, Angew. Chem. Int. Ed. 59 (2020) 14504-14510.
DOI URL |
[123] |
Z.X. Cai, Z.L. Wang, J. Kim, Y. Yamauchi, Adv. Mater. 31 (2019), 1804903.
DOI URL |
[124] |
H. Wu, Q. Tang, H. Fan, Z. Liu, A. Hu, S. Zhang, W. Deng, X. Chen, Electrochim. Acta 255 (2017) 179-186.
DOI URL |
[125] |
W. Kou, X. Li, Y. Liu, X. Zhang, S. Yang, X. Jiang, G. He, Y. Dai, W. Zheng, G. Yu, ACS Nano 13 (2019) 5900-5909.
DOI URL |
[126] |
P. Rajkumar, K. Diwakar, R. Subadevi, R.M. Gnanamuthu, F.-M. Wang, M. Sivakumar, J. Phys. D Appl. Phys. 53 (2020), 265501.
DOI URL |
[127] |
C. de las Casas, W. Li, J. Power Sources 208 (2012) 74-85.
DOI URL |
[128] |
B. Joshi, E. Samuel, H.S. Jo, Y.I. Kim, S. Park, M.T. Swihart, W.Y. Yoon, S.S. Yoon, Electrochim. Acta 253 (2017) 479-488.
DOI URL |
[129] |
M. Russello, E.K. Diamanti, G. Catalanotti, F. Ohlsson, S.C. Hawkins, B.G. Falzon, Compos. Struct. 206 (2018) 272-278.
DOI URL |
[130] |
C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, Q. Zhang, D. Zhao, L. Mai, Nat. Commun. 6 (2015) 7402.
DOI URL |
[131] |
N. Chen, L. Chen, W. Li, Z. Xu, X. Qian, Y. Liu, Ceram. Int. 45 (2019) 16676-16681.
DOI URL |
[132] |
H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11 (2011) 2644-2647.
DOI URL |
[133] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197-200.
PMID |
[134] |
M. Liu, N. Deng, J. Ju, L. Fan, L. Wang, Z. Li, H. Zhao, G. Yang, W. Kang, J. Yan, B. Cheng, Adv. Funct. Mater. 29 (2019), 1905467.
DOI URL |
[135] |
Y. Ding, H. Hou, Y. Zhao, Z. Zhu, H. Fong, Prog. Polym. Sci. 61 (2016) 67-103.
DOI URL |
[136] |
M. Inagaki, Y. Yang, F. Kang, Adv. Mater. 24 (2012) 2547-2566.
DOI URL |
[137] |
Y.Z. Zhang, Z.Z. Wu, G.L. Pan, S. Liu, X.P. Gao, ACS Appl. Mater. Interfaces 9 (2017) 12436-12444.
DOI URL |
[138] |
A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao, Z. Deng, M. Agostini, A. Matic, J.-H. Ahn, Chem. Eng. J. 385 (2020), 123453.
DOI URL |
[139] | Z.Q. Jin, Y.G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao, Y.-S. Yang, Energy Storage Mater. 14 (2018) 272-278. |
[140] |
L. Wang, X. Chen, S. Li, J. Yang, Y. Sun, L. Peng, B. Shan, J. Xie, J. Mater. Chem. A Mater. Energy Sustain. 7 (2019) 12732-12739.
DOI URL |
[141] |
Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.C. Hsu, S. Chu, Y. Cui, Nano Lett. 15 (2015) 2910-2916.
DOI URL |
[142] |
M. Rao, X. Geng, X. Li, S. Hu, W. Li, J. Power Sources 212 (2012) 179-185.
DOI URL |
[143] |
N. Deng, W. Kang, J. Ju, L. Fan, X. Zhuang, X. Ma, H. He, Y. Zhao, B. Cheng, J. Power Sources 346 (2017) 1-12.
DOI URL |
[144] |
Y. Liang, N. Deng, J. Ju, X. Zhou, J. Yan, C. Zhong, W. Kang, B. Cheng, Electrochim. Acta 281 (2018) 257-265.
DOI URL |
[145] |
K. Fu, Y. Li, M. Dirican, C. Chen, Y. Lu, J. Zhu, Y. Li, L. Cao, P.D. Bradford, X. Zhang, Chem. Commun. 50 (2014) 10277-10280.
DOI URL |
[146] |
Y. Liu, A.K. Haridas, K.K. Cho, Y. Lee, J.H. Ahn, J. Phys. Chem. C 121 (2017) 26172-26179.
DOI URL |
[147] |
C.L. Lee, C. Kim, I.D. Kim, RSC Adv. 7 (2017) 44804-44808.
DOI URL |
[148] |
Y. Zhang, W. Weng, J. Yang, Y. Liang, L. Yang, X. Luo, W. Zuo, M. Zhu, J. Mater. Sci. 54 (2018) 582-591.
DOI URL |
[149] |
Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P.A. van Aken, J. Maier, Angew. Chem. Int. Ed. 48 (2009) 6485-6489.
DOI URL |
[150] |
J. Kong, W.A. Yee, Y. Wei, L. Yang, J.M. Ang, S.L. Phua, S.Y. Wong, R. Zhou, Y. Dong, X. Li, X. Lu, Nanoscale 5 (2013) 2967-2973.
DOI URL |
[151] |
F. Wang, C. Li, J. Zhong, Z. Yang, Carbon 128 (2018) 277-286.
DOI URL |
[152] |
W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, X. Ji, J. Mater. Chem. A 1 (2013) 10662-10666.
DOI URL |
[153] |
Y. Wang, N. Xiao, Z. Wang, Y. Tang, H. Li, M. Yu, C. Liu, Y. Zhou, J. Qiu, Carbon 135 (2018) 187-194.
DOI URL |
[154] |
Y. Liu, L.Z. Fan, L. Jiao, J. Mater. Chem. A 5 (2017) 1698-1705.
DOI URL |
[155] | X. Sun, W. Li, X. Zhong, Y. Yu, Energy Storage Mater. 9 (2017) 112-118. |
[156] |
J.W. Jung, W.H. Ryu, S. Yu, C. Kim, S.H. Cho, I.D. Kim, ACS Appl. Mater. Interfaces 8 (2016) 26758-26768.
DOI URL |
[157] |
X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang, Y. Xu, J. Mater. Chem. A 5 (2017) 19237-19244.
DOI URL |
[158] |
R.A. Adams, J.M. Syu, Y. Zhao, C.T. Lo, A. Varma, V.G. Pol, ACS Appl. Mater. Interfaces 9 (2017) 17872-17881.
DOI URL |
[159] |
W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Joule 2 (2018) 1534-1547.
DOI URL |
[1] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[2] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
[3] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[4] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[5] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[6] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[7] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[8] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[9] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[10] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[11] | Yanrong Lv, Chao Han, Ye Zhu, Tianao Zhang, Shuo Yao, Zhangxing He, Lei Dai, Ling Wang. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives [J]. J. Mater. Sci. Technol., 2021, 75(0): 96-109. |
[12] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[13] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[14] | Ruimei Yuan, Hejun Li, Xuemin Yin, Peipei Wang, Jinhua Lu, Leilei Zhang. Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors [J]. J. Mater. Sci. Technol., 2021, 65(0): 182-189. |
[15] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||