J. Mater. Sci. Technol. ›› 2021, Vol. 74: 176-188.DOI: 10.1016/j.jmst.2020.10.001
• Research Article • Previous Articles Next Articles
Md. R.U. Ahsana, Xuesong Fanb, Gi-Jeong Seoc, Changwook Jid, Mark Noakese, Andrzej Nycze, Peter K. Liawb, Duck Bong Kimc,*(
)
Received:2020-04-21
Revised:2020-07-18
Accepted:2020-08-28
Published:2021-05-30
Online:2020-10-08
Contact:
Duck Bong Kim
About author:*E-mail address: dkim@tntech.edu (D.B. Kim).Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625[J]. J. Mater. Sci. Technol., 2021, 74: 176-188.
| %C | %Mn | %Si | %S | %P | %Fe | %Cr | %Ni | %Mo | %Nb + Ta | %Cu | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SS316 L | 0.02 | 2.1 | 0.81 | 0.01 | 0.02 | 63.7 | 18.9 | 11.8 | 2.2 | - | 0.23 |
| In625 | 0.02 | 0.1 | 0.14 | 0.001 | 0.005 | 0.4 | 21.7 | 64 | 8.5 | 3.8 | 0.23 |
Table 1 Chemical composition [weight percent (wt.%)] of SS316 L and In625 consumable wires.
| %C | %Mn | %Si | %S | %P | %Fe | %Cr | %Ni | %Mo | %Nb + Ta | %Cu | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SS316 L | 0.02 | 2.1 | 0.81 | 0.01 | 0.02 | 63.7 | 18.9 | 11.8 | 2.2 | - | 0.23 |
| In625 | 0.02 | 0.1 | 0.14 | 0.001 | 0.005 | 0.4 | 21.7 | 64 | 8.5 | 3.8 | 0.23 |
Fig. 2. (a) Schematic of the tool-path of deposition, (b) the fabricated BAMS of SS316 L and In625, (c) tensile-test specimens, and (d) dimensions of the tensile-test specimens.
| Variables | Unit | SS316 L | In625 | |
|---|---|---|---|---|
| Deposition parameters | Welding process | - | CMT | |
| Ampere | A | 200 | 148 | |
| Voltage | V | 13.1 | 14.5 | |
| Contact tip to work distance (CTWD) | mm | 15 | ||
| Moving speed | mm/min | 600 | ||
| Torching angle | Degree | 90 | ||
| Travel angle | Degree | 90 | ||
| Layer thickness | mm | 3 | ||
| x and y offset | mm | 3.5 | ||
| Bead overlap | % | 50 | ||
| Consumables | Feed rate | m/min. | 6.5 | |
| Diameter | mm | 1.2 | ||
| Substrate and environment | Shielding gas type | - | 90 vol.-% Ar +10 vol.-% CO2 | 100 vol.-% Ar |
| Initial bed temperature | °C | 25 | ||
| Substrate | - | Low-carbon steel | ||
| Substrate thickness | mm | 25 | ||
| Shielding gas flow rate | l/min. | 20 | ||
| Intermediate temperature | °C | 200 | ||
Table 2 Deposition parameters of the BAMS with SS316 L and In625.
| Variables | Unit | SS316 L | In625 | |
|---|---|---|---|---|
| Deposition parameters | Welding process | - | CMT | |
| Ampere | A | 200 | 148 | |
| Voltage | V | 13.1 | 14.5 | |
| Contact tip to work distance (CTWD) | mm | 15 | ||
| Moving speed | mm/min | 600 | ||
| Torching angle | Degree | 90 | ||
| Travel angle | Degree | 90 | ||
| Layer thickness | mm | 3 | ||
| x and y offset | mm | 3.5 | ||
| Bead overlap | % | 50 | ||
| Consumables | Feed rate | m/min. | 6.5 | |
| Diameter | mm | 1.2 | ||
| Substrate and environment | Shielding gas type | - | 90 vol.-% Ar +10 vol.-% CO2 | 100 vol.-% Ar |
| Initial bed temperature | °C | 25 | ||
| Substrate | - | Low-carbon steel | ||
| Substrate thickness | mm | 25 | ||
| Shielding gas flow rate | l/min. | 20 | ||
| Intermediate temperature | °C | 200 | ||
Fig. 3. (a, b) SEM micrograph of the SS316 L side and (c) higher magnification back-scattered images of the microstructure with elemental mapping results performed on the δ ferrites dendrites.
Fig. 4. Backscattered electron micrograph on the SS316 L side (a) at the 1 st layer on top of the substrate, (b) at the 10th layer, and (c) at the 11th layer.
Fig. 6. (a, b) SEM-EDX micrograph of the In625 side showing the SSB, SSGB, and MGB and (c) higher magnification microstructure showing laves phases on the SSGBs and elemental mapping data.
Fig. 7. Backscattered electron micrograph on the In625 side (a) at the 1st layer on top of the SS316 L deposit (12th layer), (b) at the 2nd layer (13th layer), (c) at the last layer, (d) graphical representation of the count of laves phase in different layers.
Fig. 8. EBSD analysis results on In625 side (a) grain map and (b) schematic explaining the coarse and fine grain formation mechanism, (c) <100> pole figure of the map, (d) IPF-Z colored map.
Fig. 10. Analysis results at the interface: (a) microstructure of the map area, (b) EDS line scan results identifying the interface, (c) EBSD grain map, and (d) EBSD IPF.
Fig. 13. (a) Stress vs. strain curves for the BAMSs, (b) EDX spot analysis result performed on the fracture surface, (c) fractured surface at low magnification, and higher-magnification image of the fracture surface, (d) at the center, and (e) at the edge.
| [1] | B. Onuike, A. Bandyopadhyay, Addit. Manuf. 22 (2018) 844-851. |
| [2] |
B. Onuike, A. Bandyopadhyay, Addit. Manuf. 27 (2019) 576-585.
DOI PMID |
| [3] |
U. Reisgen, R. Sharma, L. Oster, Metals (Basel) 9 (2019) 745.
DOI URL |
| [4] | B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A.M. Beese, Acta Mater. 19 (2016) 46-54. |
| [5] | N. Tammasophon, W. Homhrajai, J. Met., Mater. Miner. 21 (2011) 93-99. |
| [6] | M. Sireesha, S.K. Albert, V. Shankar, S. Sundaresan, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 279 (2000) 65-76. |
| [7] |
G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci. Eng. A 509 (2009) 98-104.
DOI URL |
| [8] |
P. Varghese, E. Vetrivendan, M.K. Dash, S. Ningshen, M. Kamaraj, U. Kamachi Mudali, Surf. Coat. Technol. 357 (2019) 1004-1013.
DOI URL |
| [9] |
X. Chen, J. Li, X. Cheng, B. He, H. Wang, Z. Huang, Mater. Sci. Eng. A 703 (2017) 567-577.
DOI URL |
| [10] |
H. Naffakh, M. Shamanian, F. Ashrafizadeh, Metall. Mater. Trans. A 39 (2008) 2403-2415.
DOI URL |
| [11] |
A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.B. Wicker, Mater. Des. 94 (2016) 17-27.
DOI URL |
| [12] | R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th edition, Wiley, 2013. |
| [13] |
D.E. Cooper, N. Blundell, S. Maggs, G.J. Gibbons, J. Mater. Process. Technol. 213 (2013) 2191-2200.
DOI URL |
| [14] | G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Ganguly, S. Williams, Sci. Technol. Weld. Join. 1718 (2019) 1-9. |
| [15] |
J.S. Zuback, T.A. Palmer, T. DebRoy, J. Alloys. Compd. 770 (2019) 995-1003.
DOI URL |
| [16] |
L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z.K. Liu, A.M. Beese, Acta Mater. 127 (2017) 133-142.
DOI URL |
| [17] | M.R.U. Ahsan, A.N.M. Tanvir, G.J. Seo, B. Bates, W. Hawkins, C. Lee, P.K. Liaw, M. Noakes, A. Nycz, D.B. Kim, Addit. Manuf. 32 (2020), 101036. |
| [18] |
M.R.U. Ahsan, A.N.M. Tanvir, T. Ross, A. Elsawy, M.S. Oh, D.B. Kim, Rapid Prototyp. J. 26 (2019) 519-530.
DOI URL |
| [19] | C. Shen, Application of Wire-Arc Additive Manufacturing (WAAM) Process in In-Situ Fabrication of Iron Aluminide Structures, Ph.D. Thesis, University ofWollongong, 2016. |
| [20] |
J. Rodriguez, K. Hoefer, A. Haelsig, P. Mayr, Metals (Basel) 9 (2019) 620.
DOI URL |
| [21] |
A.E. Davis, C.I. Breheny, J. Fellowes, U. Nwankpa, F. Martina, J. Ding, T. Machry, P.B. Prangnell, Mater. Sci. Eng. A 765 (2019), 138289.
DOI URL |
| [22] |
G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Ganguly, S. Williams, Sci. Technol. Weld. Joining 24 (2019) 495-503.
DOI URL |
| [23] | B. Wu, Z. Qiu, Z. Pan, K. Carpenter, T. Wang, D. Ding, S. Van Duin, H. Li, J. Mater, Sci. Technol. 52 (2020) 226-234. |
| [24] |
T. Abe, H. Sasahara, Precis. Eng. 45 (2016) 387-395.
DOI URL |
| [25] | J.N. Dupont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, 2009. |
| [26] | M.R.U. Ahsan, Y.R. Kim, R. Ashiri, Y.J. Cho, C.J. Eong, Y.D. Park, Weld. J. 95 (2016) 120-132. |
| [27] | F. Martina, M. Roy, P. Colegrove, S.W. Williams, in: Annual International Solid Freeform Fabrication Symposium, 2014, pp. 89-94, August 4. |
| [28] |
J.R. Hönnige, P.A. Colegrove, B. Ahmed, M.E. Fitzpatrick, S. Ganguly, T.L. Lee, S.W. Williams, Mater. Des. 150 (2018) 193-205.
DOI URL |
| [29] | F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P.J. Withers, J. Meyer, M. Hofmann, Mater. Sci. Technol. (UK) 32 (2016) 1439-1448. |
| [30] | B.L. Bramfitt, A.O. Benscoter, Metallographer's Guide: Practice and Procedures for Irons and Steels, ASM International, 2001. |
| [31] | B. Beausir, J.J. Fundenberger, Available Online www.Atex-Software. Eu (Accessed 22 May-12 June 2019) (2017). |
| [32] | ASTM E.8, Annu. B. ASTM Stand. 4, 2010, pp. 1-27. |
| [33] | J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons, 2005. |
| [34] |
X. Chen, J. Li, X. Cheng, H. Wang, Z. Huang, Mater. Sci. Eng. A 715 (2018) 307-314.
DOI URL |
| [35] |
A.N.M. Tanvir, M.R.U. Ahsan, C. Ji, W. Hawkins, B. Bates, D.B. Kim, Int. J. Adv. Manuf. Technol. 103 (2019) 3785-3798.
DOI URL |
| [36] |
P. Guo, B. Zou, C. Huang, H. Gao, J. Mater. Process. Technol. 240 (2017) 12-22.
DOI URL |
| [37] | J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone, M. Godino Martinez, Mater. Sci. Eng. A 764(2019). |
| [38] |
M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, Mater. Lett. 61 (2007) 2343-2346.
DOI URL |
| [39] |
H. Naffakh, M. Shamanian, F. Ashrafizadeh, J. Mater. Sci. 45 (2010) 2564-2573.
DOI URL |
| [40] |
K. Devendranath Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad, N. Arivazhagan, Mater. Des. 68 (2015) 158-166.
DOI URL |
| [41] |
R. Li, J. Xiong, Rapid Prototyp. J. 25 (2019) 1285-1294.
DOI URL |
| [1] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
| [2] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
| [3] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [4] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
| [5] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [6] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
| [7] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
| [8] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
| [9] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
| [10] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
| [11] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| [12] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
| [13] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
| [14] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
| [15] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
