J. Mater. Sci. Technol. ›› 2022, Vol. 121: 190-198.DOI: 10.1016/j.jmst.2021.11.079
• Research Article • Previous Articles Next Articles
Deliang Chenga,b, Lichun Yanga, Renzong Hua, Jie Cuic, Jiangwen Liua, Min Zhua,*()
Received:
2021-09-14
Revised:
2021-11-02
Accepted:
2021-11-09
Published:
2022-09-10
Online:
2022-03-15
Contact:
Min Zhu
About author:
*E-mail address: memzhu@scut.edu.cn (M. Zhu).Deliang Cheng, Lichun Yang, Renzong Hu, Jie Cui, Jiangwen Liu, Min Zhu. Construction of SnS-Mo-graphene nanosheets composite for highly reversible and stable lithium/sodium storage[J]. J. Mater. Sci. Technol., 2022, 121: 190-198.
Fig. 1. (a) XRD patterns of the SnS, SnS-GNs, and SnS-Mo-GNs. (b) Raman spectra of the EG, SnS-GNs, and SnS-Mo-GNs. (c-f) Sn 3d, S 2p, Mo 3d, and C 1 s XPS spectra of the SnS-Mo-GNs.
Fig. 2. (a) SEM image, (b) TEM image, (c) magnified TEM image, the inset is SAED pattern, (d-f) high resolution transmission electron microscope (HRTEM) images of A, B, C regions in Fig. 2(c), (g1-g4) elemental mapping of C, Sn, S, and Mo of the SnS-Mo-GNs composite.
Fig. 3. Electrochemical performance vs. Li/Li+. (a) CV curve of the SnS-Mo-GNs tested at 0.2 mV s-1. (b) Initial discharge/charge profiles of the SnS, SnS-GNs, and SnS-Mo-GNs tested at 0.2 A g-1. (c) Summary of initial coulombic efficiencies of the SnS, SnS-GNs, and SnS-Mo-GNs. (d) Discharge/charge profiles of the SnS-Mo-GNs of various cycles at 0.2 A g-1. (e, f) Cyclic performance and coulombic efficiencies of the SnS, SnS-GNs, and SnS-Mo-GNs at 0.2 A g-1. (g) Rate performance of the SnS, SnS-GNs, and SnS-Mo-GNs at various current densities. (h) High-rate cycling performance of the SnS-Mo-GNs at 1.0 A g-1.
Fig. 4. (a) Differential capacity plots of the SnS-Mo-GNs for different cycles. (b) Charge capacities vs. cycle of the SnS-Mo-GNs separated into potential ranges of 0.01-1.0 and 1.0-3.0 V. (c) Ex-situ XRD patterns of the SnS-Mo-GNs at different discharge/charge states for the initial cycle. (d) XRD patterns of the SnS, SnS-GNs, and SnS-Mo-GNs electrodes after cycling. (e) Sn 3d XPS spectrum of the SnS-Mo-GNs electrode after cycling.
Fig. 5. (a) Cross-sectional SEM image of fresh SnS-Mo-GNs electrode, (b) Cross-sectional SEM image, (c) surface SEM image, (d) ex-situ TEM image, (e) SAED pattern, (f) HRTEM image, and (g1-g4) elemental mapping of the SnS-Mo-GNs electrode after cycling.
Fig. 6. Electrochemical performance vs. Na/Na+. (a) CV profiles of the SnS-Mo-GNs at 0.2 mV s-1. (b) Discharge/charge profiles of the SnS-Mo-GNs at 0.2 A g-1. (c) Cycling performance of the SnS, SnS-GNs, and SnS-Mo-GNs tested at 0.2 A g-1. (d) Rate performance of the SnS, SnS-GNs, and SnS-Mo-GNs. (e) Cycling performance of the SnS-Mo-GNs tested at 1.0 A g-1.
[1] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
DOI URL |
[2] | X.Q. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami, J. Lu, K. Amine, Adv. Energy Mater. 9 (2019) |
[3] |
J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater. 22 (2010) 170-192.
DOI URL |
[4] |
Y.B. Shen, Z. Cao, Y.Q. Wu, Y. Cheng, H.J. Xue, Y.G. Zou, G. Liu, D.M. Yin, L. Cav-allo, L.M. Wang, J. Ming, J. Mater. Chem. A 8 (2020) 12306-12313.
DOI URL |
[5] | J.W. Han, D.B. Kong, W. Lv, D.M. Tang, D.L. Han, C. Zhang, D.H. Liu, Z.C. Xiao, X.H. Zhang, J. Xiao, X.Z. He, F.C. Hsia, C. Zhang, Y. Tao, D. Golberg, F.Y. Kang, L.J. Zhi, Q.H. Yang, Nat. Commun. 9 (2018) |
[6] |
X.S. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25 (2013) 2152-2157.
DOI URL |
[7] | R.Z. Hu, Y.P. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C.H. Yang, L.C. Yang, M. Zhu, Adv. Mater. 29 (2017) |
[8] | J. Xia, L. Liu, S. Jamil, J.J. Xie, H.X. Yan, Y.T. Yuan, Y. Zhang, S. Nie, J. Pan, X.Y. Wang, G.Z. Cao, Energy Storage Mater. 17 (2019) 1-11. |
[9] |
J. Ru, T. He, B. Chen, Y. Feng, L. Zu, Z. Wang, Q. Zhang, T. Hao, R. Meng, R. Che, C. Zhang, J. Yang, Angew. Chem. Int. Ed. 59 (2020) 14621-14627.
DOI URL |
[10] | C.B. Zhu, P. Kopold, W.H. Li, P.A. van Aken, J. Maier, Y. Yu, Adv. Sci. 2 (2015) |
[11] | Y. Cheng, S. Wang, L. Zhou, L. Chang, W. Liu, D. Yin, Z. Yi, L. Wang, Small 16 (2020) 2000681. |
[12] |
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J.H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, Energy Environ. Sci. 10 (2017) 1757-1763.
DOI URL |
[13] |
L. Wu, H.Y. Lu, L.F. Xiao, J.F. Qian, X.P. Ai, H.X. Yang, Y.L. Cao, J. Mater. Chem. A 2 (2014) 16424-16428.
DOI URL |
[14] | Y.D. Zhang, P.Y. Zhu, L.L. Huang, J. Xie, S.C. Zhang, G.S. Cao, X.B. Zhao, Adv. Funct. Mater. 25 (2015) 4 81-4 89. |
[15] | J. Liu, M.Z. Gu, L.Z. Ouyang, H. Wang, L.C. Yang, M. Zhu, ACS Appl. Mater. In-terfaces 8 (2016) 8502-8510. |
[16] |
T.F. Liu, Y.P. Zhang, Z.G. Jiang, X.Q. Zeng, J.P. Ji, Z.H. Li, X.H. Gao, M.H. Sun, Z. Lin, M. Ling, J.C. Zheng, C.D. Liang, Energy Environ. Sci. 12 (2019) 1512-1533.
DOI URL |
[17] | H.G. Wang, Q. Wu, Y.H. Wang, X. Wang, L.L. Wu, S.Y. Song, H.J. Zhang, Adv. Energy Mater. 9 (2019) |
[18] |
W.T. Jing, C.C. Yang, Q. Jiang, J. Mater. Chem. A 8 (2020) 2913-2933.
DOI URL |
[19] | W. Luo, F. Li, Q. Li, X. Wang, W. Yang, L. Zhou, L. Mai, ACS Appl. Mater. Inter-faces 10 (2018) 7201-7207. |
[20] |
Y. Zheng, T.F. Zhou, C.F. Zhang, J.F. Mao, H.K. Liu, Z.P. Guo, Angew. Chem. Int. Ed. 55 (2016) 3408-3413.
DOI URL PMID |
[21] |
D.D. Vaughn, O.D. Hentz, S.R. Chen, D.H. Wang, R.E. Schaak, Chem. Commun. 48 (2012) 5608-5610.
DOI URL |
[22] |
Q.C. Pan, F.H. Zheng, Y.N. Wu, X. Ou, C.H. Yang, X.H. Xiong, M.L. Liu, J. Mater. Chem. A 6 (2018) 592-598.
DOI URL |
[23] |
B. Zhao, Z.X. Wang, F. Chen, Y.Q. Yang, Y. Gao, L. Chen, Z. Jiao, L.L. Cheng, Y. Jiang, ACS Appl. Mater. Interfaces 9 (2017) 1407-1415.
DOI URL |
[24] |
Y. Cheng, Z. Wang, L. Chang, S. Wang, Q. Sun, Z. Yi, L. Wang, ACS Appl. Mater. Interfaces 12 (2020) 25786-25797.
DOI URL |
[25] |
Y. Li, J.P. Tu, X.H. Huang, H.M. Wu, Y.F. Yuan, Electrochem. Commun. 9 (2007) 49-53.
DOI URL |
[26] |
Q.W. Lian, G. Zhou, J.T. Liu, C. Wu, W.F. Wei, L.B. Chen, C.C. Li, J. Power Sources 366 (2017) 1-8.
DOI URL |
[27] |
P. Xue, N. Wang, Y. Wang, Y. Zhang, Y. Liu, B. Tang, Z. Bai, S. Dou, Carbon 134 (2018) 222-231.
DOI URL |
[28] |
S.K. Li, S.Y. Zuo, Z.G. Wu, Y. Liu, R.F. Zhuo, J.J. Feng, D. Yan, J. Wang, P.X. Yan, Electrochim. Acta 136 (2014) 355-362.
DOI URL |
[29] |
S.K. Li, J.X. Zheng, S.Y. Zuo, Z.G. Wu, P.X. Yan, F. Pan, RSC Adv. 5 (2015) 46941-46946.
DOI URL |
[30] |
J.W. Wang, Y.Y. Lu, N. Zhang, X.D. Xiang, J. Liang, J. Chen, RSC Adv. 6 (2016) 95805-95811.
DOI URL |
[31] |
P.L. He, Y.J. Fang, X.Y. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. 56 (2017) 12202-12205.
DOI URL |
[32] |
R.Z. Hu, D.C. Chen, G. Waller, Y.P. Ouyang, Y. Chen, B.T. Zhao, B. Rainwater, C.H. Yang, M. Zhu, M.L. Liu, Energy Environ. Sci. 9 (2016) 595-603.
DOI URL |
[33] |
R.Z. Hu, H.P. Zhang, Z.C. Lu, J. Liu, M.Q. Zeng, L.C. Yang, B. Yuan, M. Zhu, Nano Energy 45 (2018) 255-265.
DOI URL |
[34] |
T. Liang, R.Z. Hu, H.P. Zhang, H.Y. Zhang, H. Wang, Y.P. Ouyang, J. Liu, L.C. Yang, M. Zhu, J. Mater. Chem. A 6 (2018) 7206-7220.
DOI URL |
[35] |
R.Z. Hu, Y.P. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L.C. Yang, M. Zhu, Energy Environ. Sci. 10 (2017) 2017-2029.
DOI URL |
[36] |
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
DOI URL |
[37] |
W. Sun, R.Z. Hu, H.Y. Zhang, Y.K. Wang, L.C. Yang, J.W. Liu, M. Zhu, Electrochim. Acta 187 (2016) 1-10.
DOI URL |
[38] |
D.L. Cheng, J.W. Liu, X. Li, R.Z. Hu, M.Q. Zeng, L.C. Yang, M. Zhu, J. Power Sources 350 (2017) 1-8.
DOI URL |
[39] |
X.H. Xiong, G.H. Wang, Y.W. Lin, Y. Wang, X. Ou, F.H. Zheng, C.H. Yang, J.H. Wang, M.L. Liu, ACS Nano 10 (2016) 10953-10959.
DOI URL |
[40] |
T.H.T. Luu, D.L. Duong, T.H. Lee, D.T. Pham, R. Sahoo, G. Han, Y.M. Kim, Y.H. Lee, J. Mater. Chem. A 8 (2020) 7861-7869.
DOI URL |
[41] |
J. Gao, J.J. He, N. Wang, X.D. Li, Z. Yang, K. Wang, Y.H. Chen, Y.L. Zhang, C.S. Huang, Chem. Eng. J. 373 (2019) 660-667.
DOI URL |
[42] | Z.J. Zhang, H.L. Zhao, Y.Q. Teng, X.W. Chang, Q. Xia, Z.L. Li, J.J. Fang, Z.H. Du, K. Swierczek, Adv. Energy Mater. 8 (2018) |
[43] |
L. Assmann, J.C. Bernede, A. Drici, C. Amory, E. Halgand, M. Morsli, Appl. Surf. Sci. 246 (2005) 159-166.
DOI URL |
[44] | Y.C. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez, H.L. Zhu, Adv. Energy Mater. 8 (2018) |
[45] | D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, Z.X. Shen, Nat. Commun. 7 (2016) |
[46] |
C.X. Zu, A. Manthiram, Adv. Energy Mater. 3 (2013) 1008-1012.
DOI URL |
[47] | D.L. Cheng, L.C. Yang, R.Z. Hu, J.W. Liu, M. Zhu, Energy Environ.Mater. 4 (2021) 229-238. |
[1] | Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability [J]. J. Mater. Sci. Technol., 2022, 107(0): 165-171. |
[2] | Chengcheng Huang, Yiwen Liu, Runtian Zheng, Zhengwei Yang, Zhonghao Miao, Junwei Zhang, Xinhao Cai, Haoxiang Yu, Liyuan Zhang, Jie Shu. Interlayer gap widened TiS2 for highly efficient sodium-ion storage [J]. J. Mater. Sci. Technol., 2022, 107(0): 64-69. |
[3] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[4] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[5] | Jinghao Li, Kehan Le, Wei Wei. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering [J]. J. Mater. Sci. Technol., 2022, 102(0): 272-277. |
[6] | Juan Liu, Ning Wang, Fuwei Zheng, Chuanxing Wang, Jing Wang, Baorong Hou, Qianyu Zhao, Yanli Ning, Yiteng Hu. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection [J]. J. Mater. Sci. Technol., 2022, 122(0): 211-218. |
[7] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[8] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[9] | Zhijia Zhang, Yuefang Chen, Shihao Sun, Kai Sun, Heyi Sun, Hongwei Li, Yuhe Yang, Mengmeng Zhang, Weijie Li, Shulei Chou, Huakun Liu, Yong Jiang. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage [J]. J. Mater. Sci. Technol., 2022, 119(0): 167-181. |
[10] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
[11] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[12] | Bingfeng Cui, Yu Gao, Xiaopeng Han, Wenbin Hu. Reversible Zn stripping/plating achieved by surface thin Sn layer for high-performance aqueous zinc metal batteries [J]. J. Mater. Sci. Technol., 2022, 117(0): 72-78. |
[13] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[14] | Shuhua Hao, Yupeng Xing, Peiyu Hou, Gang Zhao, Jinzhao Huang, Shipeng Qiu, Xijin Xu. Rational construction of phosphate layer to optimize Cu-regulated Fe3O4 as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries [J]. J. Mater. Sci. Technol., 2022, 108(0): 133-141. |
[15] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||