J. Mater. Sci. Technol. ›› 2022, Vol. 121: 199-206.DOI: 10.1016/j.jmst.2022.03.002
• Research Article • Previous Articles Next Articles
Xiaodi Zhoua,b,1, He Hana,1, Yuchao Wangc,d, Cheng Zhangc,*(), Hualiang Lvb,*(
), Zhichao Loua,*(
)
Received:
2022-02-03
Revised:
2022-03-10
Accepted:
2022-03-11
Published:
2022-09-10
Online:
2022-03-19
Contact:
Cheng Zhang,Hualiang Lv,Zhichao Lou
About author:
zc-lou2015@njfu.edu.cn (Z. Lou).1 These authors contributed equally to this work.
Xiaodi Zhou, He Han, Yuchao Wang, Cheng Zhang, Hualiang Lv, Zhichao Lou. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 121: 199-206.
Fig. 1. Morphology of fibrous CNT-Fe nanostructures. (a) Schematic illustration of the procedure for synthesizing SiO2-coated fibrous CNT-Fe composite structure. (b-e) FE-SEM images of the fibrous CNT-Fe-2 structure at different magnifications. (f-i) FE-SEM image of (f) CNT-Fe-1, (g) CNT-Fe-2, (h) CNT-Fe-3 and (i) CNT-Fe-4 at large magnification.
Fig. 2. Crystal structure analysis of fibrous CNT-Fe. (a) XRD patterns of CNT-Fe structures with different content of Fe nanoparticles. (b) XPS of Fe 3/2p peak of CNT-Fe-3 and CNT-Fe-4. (c-e) TEM images of (c) CNT-Fe-3 and (d, e) CNT-Fe-4. Inset in d shows the high magnification image of Fe nanoparticle aggregates. (f) M-H loops curve of the CNT-Fe structures.
Fig. 3. EM absorption performance of CNT-Fe: (a-d) 2D color mappings of RL values of CNT-Fe structures with thickness ranging from 1.0 to 5.0 mm. The color bar is RL values in units of dB. (e, f) The RL value < -10 dB of CNT-Fe with thickness ranging from 1.0 to 2.0 mm.
Fig. 4. CNT-Fe parameters of EM absorption. (a) Real part and (b) imaginary part of permeability; (c) eddy current loss, (d) magnetic loss tangent, permittivity of CNT-Fe structures (e) real part and (f) imaginary part.
Fig. 5. Dielectric loss mechanism of CNT-Fe structures. (a) Electrical conductivity of CNT-Fe structures. (b-e) Cole-Cole circles of CNT-Fe structures. (f) Dielectric loss tangent of CNT-Fe structures as a function of frequency.
Fig. 6. EM performance of SiO2-coated CNT-Fe composites. (a-c) FE-SEM images of CNT-Fe-3 structures after dispersing into the SiO2 matrix. (d-f) 2D color mappings of RL curves and (g-i) efficient absorption frequency region of CNT-Fe-3 (d, g) before and (e, h) after keeping in laboratory air for 30 days and (f, i) dispersing into the acid aqueous solution (pH = 5.6).
[1] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano Micro Lett. 13 (2021) |
[2] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) |
[3] | H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou, B. Fei, R.B. Wu, Nat. Commun. 12 (2021) |
[4] | H.L. Lv, Z.H. Yang, H.G. Pan, Prog. Mater. Sci. 127 (2022) |
[5] | X.X. Sun, M.L. Yang, S. Yang, S.S. Wang, W.L. Yin, R.C. Che, Y.B. Li, Small 15 (2019) |
[6] | H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26 (2014) |
[7] |
H. Zhao, J. Yun, Y.L. Zhang, K.P. Ruan, Y.S. Huang, Y.P. Zheng, L.X. Chen, J.W. Gu, ACS Appl. Mater. Interfaces 14 (2022) 3233-3243.
DOI URL |
[8] |
D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, J. Mater. Chem. A 8 (2021) 5086-5096.
DOI URL |
[9] |
J.Q. Tao, L.L. Xu, L. Wan, J.S. Hou, P.S. Yi, P. Chen, J.T. Zhou, Z.J. Yao, Nanoscale 13 (2021) 12896-12909.
DOI URL |
[10] | Y. Liu, X.H. Liu, X.Y. E, B.B. Wang, Z.R. Jia, Q.G. Chi, G.L. Wu, J. Mater. Sci. Tech-nol. 103 (2022) 157-164. |
[11] |
L.J. Yang, X.D. Zhou, Z.R. Jia, H.L. Lv, Y.T. Zhu, J.C. Liu, Z.H. Yang, Carbon 167 (2020) 843-851.
DOI URL |
[12] | L.F. Sun, Z.R. Jia, S. Xu, M.B. Ling, D.Q. Hu, X.H. Liu, C.H. Zhang, G.L. Wu, Com-pos. Commun. 29 (2022) |
[13] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano Micro Lett. 14 (2022) |
[14] | J. Qiao, X. Zhang, D.M. Xu. L.X. Kong, L.F. Lv, F. Yang, F.L. Wang, W. Liu, J.R. Liu, Chem. Eng. J. 380 (2020) |
[15] | G.H. He, Y.P. Duan, H.F. Pang, Nano Micro Lett. 12 (2020) |
[16] | F. Zhang, Z.R. Jia, Z. Wang, C.H. Zhang, B.B. Wang, B.H. Xu, X.H. Liu, G.L. Wu, Mater. Today Phys. 20 (2021) |
[17] |
H.L. Lv, Y.H. Guo, Z.H. Yang, Y. Cheng, L.Y.P. Wang, B.S. Zhang, Y. Zhao, Z.C.J. Xu, G.B. Ji, J. Mater. Chem. C 5 (2017) 491-512.
DOI URL |
[18] | Q.W. Zeng, L. Wang, X. Li, W.B. You, J. Zhang, X.H. Liu, M. Wang, R.C. Che, Appl. Surf. Sci. 538 (2021) |
[19] | B. Zhao, Y. Li, Q.W. Zeng, L. Wang, J.J. Ding, R. Zhang, R.C. Che, Small 16 (2020) |
[20] |
X.F. Zhou, B.B. Wang, Z.R. Jia, X.D. Zhang, X.H. Liu, K.K. Wang, B.H. Xu, G.L. Wu, J. Colloid Interface Sci. 582 (2021) 515-525.
DOI URL |
[21] | H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater. 30 (2018) |
[22] | M. Zhang, Z.J. Li, T. Wang, S.Q. Ding, G.Y. Song, J. Zhao, A. Meng, H.Y. Yu, Q.D. Li, Chem. Eng. J. 362 (2019) |
[23] |
Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, J.W. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI URL |
[24] | G.L. Wu, H.X. Zhang, X.X. Luo, L.J. Yang, H.L. Lv, J. Colloid Interface Sci. 536 (2019) |
[25] | Z.C. Lou, Q.Y. Wang, Y. Zhang, X.D. Zhou, R. Li, J. Liu, Y.J. Li, H.L. Lv, Compos. Part B-Eng. 214 (2021) |
[26] | H.L. Lv, Y.H. Guo, Z.H. Yang, T.C. Guo, H.J. Wu, G. Liu, L.Y. Wang, R.B. Wu, ACS Sustain. Chem. Eng. 6 (2018) |
[27] | H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C. J. Xu, Adv. Funct. Mater. 29 (2019) |
[28] | L. Wang, X. Li, X.F. Shi, M.Q. Huang, X.H. Li, Q.W. Zeng, R.C. Che, Nanoscale 13 (2021) |
[29] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano Micro Lett. 13 (2021) |
[30] | H.L. Lv, Y. Li, Z.R. Jia, L.J. Wang, X.Q. Guo, B. Zhao, R. Zhang, Compos. Part B-Eng. 196 (2020) |
[31] |
Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, G.L. Wu, Nano Res. (2022), doi: 10.1007/s12274-022-4287-5.
DOI URL |
[32] | J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) |
[33] | M.Q. Huang, L. Wang, Q. Liu, W.B. You, R.C. Che, Chem. Eng. J. 429 (2022) |
[34] | H. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, Adv. Funct. Mater. 30 (2020) |
[35] | T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, G.L. Wu, Chem. Eng. J. 431 (2022) |
[36] | C. Zhang, C. Long, S. Yin, R.G. Song, B. Han, W.J. Zhang, D.P. He, Q. Cheng, Mater. Design 206 (2021) |
[37] | G.L. Wu, Z.R. Jia, X.F. Zhou, G.Z. Nie, H.L. Lv, Compos. Part A-Appl. Sci. 128 (2020) |
[38] | X.Y. Zhang, Z.R. Jia, F. Zhang, Z.H. Xia, J.X. Zou, Z. Gu, G.L. Wu, J. Colloid Inter-face Sci. 610 (2022) 610-620. |
[39] | H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, Y.W. Du, Nano Res. 9 (2016) |
[40] | F. Zhang, Z.R. Jia, Z. Wang, C.H. Zhang, B.B. Wang, B.H. Xu, X.H. Liu, G.L. Wu, Mater. Today Phys. 20 (2021) |
[41] | X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, X.H. Liu, B.H. Xu, L. Bi, G.L. Wu, Chem. Eng, J. 420 (2021) |
[42] |
L. Lei, Z.J. Yao, J.T. Zhou, W.J. Zheng, B. Wei, J.Q. Zu, K.Y. Yan, Carbon 173 (2021) 69-79.
DOI URL |
[43] | Z.C. Lou, Q.Y. Wang, X.D. Zhou, U.I. Kara, R.S. Mamtani, H.L. Lv, M. Zhang, Z.H. Yang, Y.J. Li. C.X. Wang, S. Adera, X.G. Wang, J. Mater. Sci. Technol. 113 (2022) |
[44] |
B.W. Wong, C. Zhang, Y.C. Guo, L.L. Huang, H. Ma, Q. Cheng, Nanophotonics (2022), doi: 10.1515/nanoph-2022-0018.
DOI URL |
[45] | Z.C. Lou, Q.Y. Wang, W. Sun, J. Liu, H. Yan, H. Han, H.Y. Bian, Y.J. Li, Chem. Eng. J. 430 (2022) |
[46] |
B.L. Wang, Q. Wu, Y.G. Gu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
[47] |
M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Carbon 182 (2021) 806-814.
DOI URL |
[48] | M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Ceram. Int. 47 (2021) |
[49] | X.J. Zeng, C. Zhao, Y.C. Yin, T.L. Nie, N.H. Xie, R.H. Yu, G.D. Stucky, Carbon 19 (2022) |
[50] | Y.Q. Guo, H. Qiu, K.P. Ruan, S.S. Wang, Y.L. Zhang, J.W. Gu, Compos. Sci. Technol. 219 (2022) |
[51] | M. Zhang, H.L. Ling, S.Q. Ding, Y.X. Xie, T.T. Cheng, L.B. Zhao, T. Wang, H.G. Bian, H. Lin, Z.J. Li, A. Meng, Carbon 174 (2021) |
[52] | Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou, H.Y. Bian, Z.H. Yang, Y.J. Li, H.L. Lv, S. Adera, X.G. Wang, Nano Micro Lett. 14 (2022) |
[53] | C. Zhang, S. Yin, C. Long, B.W. Dong, D.P. He, Q. Cheng, Opt. Express 29 (2021) |
[54] | Z.J. Li, H. Li, S.Q. Ding, H.L. Ling, T. Wang, Z.Q. Miao, M. Zhang, A. Meng, Q.D. Li, Carbon 167 (2020) |
[55] | C.Y. Wen, X. Li, R.X. Zhang, C.Y. Xu, W.B. You, Z.W. Liu, B. Zhao, R.C. Che, ACS Nano 16 (2022) |
[56] | H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang, J. Mater. Chem. A 9 (2021) |
[1] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||