J. Mater. Sci. Technol. ›› 2022, Vol. 121: 207-219.DOI: 10.1016/j.jmst.2021.12.054
• Research Article • Previous Articles Next Articles
Chunbo Wanga,b, Yuqing Liangb, Ying Huangb, Meng Lia,b, Baolin Guoa,b,*(
)
Received:2021-09-08
Revised:2021-12-05
Accepted:2021-12-18
Published:2022-09-10
Online:2022-03-15
Contact:
Baolin Guo
About author:*E-mail address: baoling@mail.xjtu.edu.cn (B. Guo).Chunbo Wang, Yuqing Liang, Ying Huang, Meng Li, Baolin Guo. Porous photothermal antibacterial antioxidant dual-crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair[J]. J. Mater. Sci. Technol., 2022, 121: 207-219.
Fig. 2. Swelling ratio and mechanical properties of the cryogels. (a) Swelling ratios of the HA-ADH/DA cryogels. (b) The uniaxial (80% strain) compression stress-strain curves of the cryogels. (c-h) The cyclic (80% strain) compression stress-strain curves of HA-ADH/DA0, HA-ADH/DA2, HA-ADH/DA4, HA-ADH/DA6, HA-ADH/DA8, and HA-ADH/DA10, respectively. (i) First row: The original, compressed, expanded, and re-squeezed pictures of HA-ADH/DA6 cryogel. Second row: Image of HA-ADH/DA6 cryogel swelling in liquid and image of liquid being completely absorbed. Scale bar: 1 cm.
Fig. 3. SEM image of HA-ADH/DA cryogels. (a) The original pore structure of the cryogels after freeze-drying, fixed and compressed pore structure, and the pore structure with shape recovery. Scale bar: 300 μm. (b-g) Pore size distribution of cryogel in its original state.
Fig. 4. Blood compatibility and cell compatibility of cryogel. (a) In vitro hemolysis of cryogel when the concentration of the sample is 2500 μg/mL. P: PBS; 0: HA-ADH/DA0; 2: HA-ADH/DA2; 4: HA-ADH/DA4; 6: HA-ADH/DA6; 8: HA-ADH/DA8; 10: HA-ADH/DA10; T: Triton X-100. Scale bar: 1 cm. (b) Hemolysis ratio of cryogels. (c) L929 cell viability after being treated with different cryogel extractions. (d) The effect of the direct contact method on the proliferation of L929 cells on day 1 and day 3. (e) 3D culture model diagram. (f) The cell proliferation of 3D culture. (g, h) Morphology of L929 cells cultured in HA-ADH/DA6 with Live/dead staining. Scale bar: 100 μm. *p < 0.05, **p < 0.01.
Fig. 5. Hemostatic evaluation of cryogel. (a) SEM images of gauze, gelatin sponge and HA-ADH/DA cryogels in blood cell adhesion and platelet adhesion tests. Scale bar: 30 µm. (b) The data of gauze, gelatin sponge and HA-ADH/DA cryogels dynamic whole blood clotting assay. (c) Schematic representation, (d) blood loss and (e) hemostatic time in the mouse liver trauma model. (f) Schematic representation, (g) blood loss and (h) hemostatic time in the rat liver defect hemorrhage model. *p < 0.05, **p < 0.01, ***p < 0.001.
Fig. 6. The ability to scavenge DPPH and photothermal, antibacterial property evaluation of the HA-ADH/DA cryogels. (a) The ability of the HA-ADH/DA cryogels to scavenge DPPH. (b) Temperature enhancement of HA-ADH/DA cryogels under irradiation with power density of 1.4 W/cm2. (c) Temperature enhancement of HA-ADH/DA6 under irradiation with different power density (1.0, 1.4 and 1.8 W/cm2). (d) Photothermal image of HA-ADH/DA cryogels with power density of 1.4?W/cm2. (e) Photographs of the survival EC and (f) MRSA under the NIR irradiation (power density was 1.4 W/cm2). Scale bar: 4 cm. The sterilization ratio-irradiation time curves of (g) EC and (h) MRSA for PBS, HA-ADH/DA0, and HA-ADH/DA6 treatment under the NIR irradiation (power density was 1.4?W/cm2).
Fig. 7. MRSA-infected wound healing effect of different treatments. (a) Photographs of the wounds treated with TegadermTM dressing, HA-ADH/DA0, HA-ADH/DA6 and HA-ADH/DA6+NIR. (b) Wound closure ratio of the different materials treated wounds. (c) H&E staining of wounds on day 3, 7, 14, and 21. The yellow arrow in Fig. 7(c) represents granulation tissue.
Fig. 8. MRSA-infected wound skin tissue remodeling effect of different treatment groups. (a) Epidermal thickness on day 14 and (b) granulation tissue thickness on day 7. (c) Masson staining of wounds on day 14 and 21. The epidermis, dermis, and hypodermis of the skin on day 14. *p < 0.05, **p < 0.01, ***p < 0.001.
Fig. 9. Immunofluorescence staining of (a) CD68 and (b) CD31 in the skin tissues on day 3 and day 7. (c, d) Relative fluorescence intensity of CD68 and CD31 in the skin tissues on day 3 and day 7. Scale bar: 100 μm. *p < 0.05, **p < 0.01, ***p < 0.001.
| [1] |
D.W. Grainger, Diabetes 64 (2015) 2717-2719.
DOI URL PMID |
| [2] |
S.L. Percival, J.G. Thomas, D.W. Williams, Int. Wound J. 7 (2010) 169-175.
DOI URL PMID |
| [3] |
T.J. Shaw, P. Martin, J. Cell Sci. 122 (2009) 3209-3213.
DOI URL |
| [4] |
D. Milatovic, I. Braveny, Eur. J. Clin. Microbiol. 6 (1987) 234-244.
DOI URL PMID |
| [5] |
M. Frieri, K. Kumar, A. Boutin, J. Infect. Public Health 10 (2017) 369-378.
DOI URL |
| [6] |
R. Wesgate, P. Grasha, J.Y. Maillard, Am. J. Infect. Control 44 (2016) 458-464.
DOI URL |
| [7] |
M. Akova, Virulence 7 (2016) 252-266.
DOI URL |
| [8] |
M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, J. Appl. Microbiol. 112 (2012) 841-852.
DOI URL PMID |
| [9] |
B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Burns 33 (2007) 139-148.
DOI URL |
| [10] |
C. Beer, R. Foldbjerg, Y. Hayashi, D.S. Sutherland, H. Autrup, Toxicol. Lett. 208 (2012) 286-292.
DOI URL |
| [11] |
C. Marambio-Jones, E.M.V. Hoek, J. Nanopart. Res. 12 (2010) 1531-1551.
DOI URL |
| [12] | X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, ACS Appl. Mater. Inter-faces 9 (2017) 30470-30479. |
| [13] |
S.J. Park, E.B. Kang, S.M. Sharker, G. Lee, I. In, S.Y. Park, Macromol. Mater. Eng. 301 (2016) 141-148.
DOI URL |
| [14] | Y. Yu, P. Li, C. Zhu, N. Ning, S. Zhang, G.J. Vancso, Adv. Funct. Mater. 29 (2019) |
| [15] |
J. Xu, K. Yao, Z. Xu, Nanoscale 11 (2019) 8680-8691.
DOI URL |
| [16] |
X. Fan, F. Yang, C. Nie, Y. Yang, H. Ji, C. He, C. Cheng, C. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 296-307.
DOI URL |
| [17] |
H. Ji, K. Dong, Z. Yan, C. Ding, Z. Chen, J. Ren, X. Qu, Small 12 (2016) 6200-6206.
DOI URL |
| [18] | A. D’Agostino, A. Taglietti, R. Desando, M. Bini, M. Patrini, G. Dacarro, L. Cucca, P. Pallavicini, P. Grisoli, Nanomaterials 7 (2017) |
| [19] |
D. Hu, H. Li, B. Wang, Z. Ye, W. Lei, F. Jia, Q. Jin, K.F. Ren, J. Ji, ACS Nano 11 (2017) 9330-9339.
DOI URL |
| [20] | S.B. Abel, E.I. Yslas, C.R. Rivarola, C.A. Barbero, Nanotechnology 29 (2018) |
| [21] | X. Fan, H. Li, W. Ye, M. Zhao, D. Huang, Y. Fang, B. Zhou, K. Ren, J. Ji, G. Fu, Colloids Surf. B 183 (2019) |
| [22] |
Y. Liu, K. Ai, L. Lu, Chem. Rev. 114 (2014) 5057-5115.
DOI URL |
| [23] |
C. Liu, W. Yao, M. Tian, J. Wei, Q. Song, W. Qiao, Biomaterials 179 (2018) 83-95.
DOI URL |
| [24] | Y. Liang, M. Li, Y. Huang, B. Guo, Small 17 (2021) |
| [25] |
B. Guo, R. Dong, Y. Liang, M. Li, Nat. Rev. Chem. 5 (2021) 773-791.
DOI URL |
| [26] | M. Shin, J.H. Ryu, K.R. Kim, M.J. Kim, S. Jo, M.S. Lee, D.Y. Lee, H. Lee, ACS Bio-mater. Sci. Eng. 4 (2018) 2314-2318. |
| [27] |
M. Li, Z. Zhang, Y. Liang, J. He, B. Guo, ACS Appl. Mater. Interfaces 12 (2020) 35856-35872.
DOI URL |
| [28] |
M.S. Birajdar, K.S. Halake, J. Lee, J. Ind. Eng. Chem. 63 (2018) 117-123.
DOI URL |
| [29] |
X. Bao, J. Zhao, J. Sun, M. Hu, X. Yang, ACS Nano 12 (2018) 8882-8892.
DOI URL |
| [30] | X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han, B. Guo, Adv. Funct. Mater. 30 (2020) |
| [31] |
Z. Wang, Y. Duan, Y. Duan, J. Control Release 290 (2018) 56-74.
DOI URL |
| [32] |
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, J. Colloid Interface Sci. 556 (2019) 514-528.
DOI URL |
| [33] |
Y. Liang, J. He, B. Guo, ACS Nano 15 (2021) 12687-12722.
DOI URL |
| [34] |
J.A.P. Gomes, R. Amankwah, A. Powell-Richards, H.S. Dua, Br. J. Ophthalmol. 88 (2004) 821-825.
DOI URL |
| [35] |
P.H. Weigel, G.M. Fuller, R.D. LeBoeuf, J. Theor. Biol. 119 (1986) 219-234.
URL PMID |
| [36] |
J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma, B. Guo, Chem. Eng. J. 362 (2019) 548-560.
DOI URL |
| [37] | K.G. Rice, J. Med. Chem. 41 (1998) |
| [38] | S.K. Hahn, R. Ohri, C.M. Giachelli, Biotechnol. Bioeng. 10 (2005) 218-224. |
| [39] |
P.L. Tran, A.N. Hamood, A. De Souza, G. Schultz, B. Liesenfeld, D. Mehta, T.W. Reid, Wound Repair Regen. 23 (2015) 74-81.
DOI URL |
| [40] |
Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, S. Yang, Adv. Funct. Mater. 24 (2014) 3933-3943.
DOI URL |
| [41] |
K.A. Rieger, N.P. Birch, J.D. Schiffman, J. Mater. Chem. B 1 (2013) 4531-4541.
DOI URL |
| [42] |
X. Yu, L. Guo, M. Liu, X. Cao, S. Shang, Z. Liu, D. Huang, Y. Cao, F. Cui, L. Tian, Int. J. Biol. Macromol. 120 (2018) 2279-2284.
DOI URL |
| [43] | A.E. Stoica, C. Chircov, A.M. Grumezescu, Molecules 25 (2020) |
| [44] |
Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin, B. Chen, L. Bai, Y. Han, B. Guo, Chem. Mater. 32 (2020) 6595-6610.
DOI URL |
| [45] | X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Nat. Commun. 9 (2018) |
| [46] |
X. Jia, G. Colombo, R. Padera, R. Langer, D.S. Kohane, Biomaterials 25 (2004) 4797-4804.
DOI URL |
| [47] | J. He, M. Shi, Y. Liang, B. Guo, Chem. Eng. J. 394 (2020) |
| [48] | Y. Huang, X. Zhao, C. Wang, J. Chen, Y. Liang, Z. Li, Y. Han, B. Guo, Chem. Eng. J. 427 (2022) |
| [49] |
Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, ACS Appl. Mater. Interfaces 11 (2019) 6796-6808.
DOI URL |
| [50] |
T. Kageyama, T. Osaki, J. Enomoto, D. Myasnikova, T. Nittami, T. Hozumi, T. Ito, J. Fukuda, ACS Biomater. Sci. Eng. 2 (2016) 1059-1066.
DOI URL |
| [51] | P.A. Shiekh, A. Singh, A. Kumar, Biomaterials 249 (2020) |
| [52] | J. He, Z. Zhang, Y. Yang, F. Ren, J. Li, S. Zhu, F. Ma, R. Wu, Y. Lv, G. He, B. Guo, D. Chu, Nano Micro Lett 13 (2021) |
| [53] | X. Zhao, Y. Liang, B. Guo, Z. Yin, D. Zhu, Y. Han, Chem. Eng. J. 403 (2021) |
| [54] |
J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo, Biomaterials 183 (2018) 185-199.
DOI URL |
| [55] |
M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Chem. Mater. 32 (2020) 9937-9953.
DOI URL |
| [56] |
Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, ACS Nano 15 (2021) 7078-7093.
DOI URL |
| [57] | P. Li, S. Liu, X. Yang, S. Du, W. Tang, W. Cao, J. Zhou, X. Gong, X. Xing, Chem. Eng. J. 403 (2021) |
| [58] | J. Li, Y. Wang, J. Yang, W. Liu, Chem. Eng. J. 420 (2020) |
| [59] | B. Tao, C. Lin, Z. Yuan, Y. He, M. Chen, K. Li, J. Hu, Y. Yang, Z. Xia, K. Cai, Chem. Eng. J. 403 (2021) |
| [60] | G. Xie, N. Zhou, Y. Gao, S. Du, H. Du, J. Tao, L. Zhang, J. Zhu, Chem. Eng. J. 403 (2021) |
| [61] | T. Su, M. Zhang, Q. Zeng, W. Pan, Y. Huang, Y. Qian, W. Dong, X. Qi, J. Shen, Bioact. Mater. 6 (2021) 579-588. |
| [62] | N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 11600-11605. |
| [63] |
O. Terland, B. Almas, T. Flatmark, K.K. Andersson, M. Sorlie, Free Radic. Biol. Med. 41 (2006) 1266-1271.
DOI URL |
| [64] |
A. Ramkissoon, P.G. Wells, Free Radic. Biol. Med. 50 (2011) 295-304.
DOI URL |
| [65] |
I. Miyazaki, M. Asanuma, Acta Med. Okayama 62 (2008) 141-150.
PMID |
| [66] |
L. Han, P. Li, P. Tang, X. Wang, T. Zhou, K. Wang, F. Ren, T. Guo, X. Lu, Nanoscale 11 (2019) 15846-15861.
DOI URL PMID |
| [67] |
I. Bruzauskaite, D. Bironaite, E. Bagdonas, E. Bernotiene, Cytotechnology 68 (2016) 355-369.
DOI URL |
| [68] |
B.A. Harley, H.D. Kim, M.H. Zaman, I.V. Yannas, D.A. Lauffenburger, L.J. Gibson, Biophys. J. 95 (2008) 4013-4024.
DOI URL |
| [69] |
C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials 31 (2010) 461-466.
DOI URL PMID |
| [70] |
I.C. Lee, Y.T. Lee, B.Y. Yu, J.Y. Lai, T.H. Young, J. Biomed. Mater. Res. A 91 (2009) 929-938.
DOI PMID |
| [71] |
S. Thönes, L.M. Kutz, S. Oehmichen, J. Becher, K. Heymann, A. Saalbach, W. Knolle, M. Schnabelrauch, S. Reichelt, U. Anderegg, Int. J. Biol. Macromol. 94 (2017) 611-620.
DOI URL PMID |
| [72] |
C.F. Jones, R.A. Campbell, Z. Franks, C.C. Gibson, G. Thiagarajan, A. Vieira-de-Abreu, S. Sukavaneshvar, S.F. Mohammad, D.Y. Li, H. Ghan-dehari, A.S. Weyrich, B.D. Brooks, D.W. Grainger, Mol. Pharmaceut. 9 (2012) 1599-1611.
DOI URL |
| [73] |
F. Cheng, C. Liu, X. Wei, T. Yan, H. Li, J. He, Y. Huang, ACS Sustain. Chem. Eng. 5 (2017) 3819-3828.
DOI URL |
| [74] |
C. Dai, Y. Yuan, C. Liu, J. Wei, H. Hong, X. Li, X. Pan, Biomaterials 30 (2009) 5364-5375.
DOI URL |
| [75] |
J. Luo, C. Liu, J. Wu, L. Lin, H. Fan, D. Zhao, Y. Zhuang, Y. Sun, Mater. Sci. Eng. C 98 (2019) 628-634.
DOI URL |
| [76] | Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K. Chu, S. Wu, Adv. Funct. Mater. 28 (2018) |
| [77] | R. Gharibi, H. Yeganeh, A. Rezapour-Lactoee, Z.M. Hassan, ACS Appl. Mater. In-terfaces 7 (2015) 24296-24311. |
| [78] | Y. Zhu, Z. Ma, L. Kong, Y. He, H.F. Chan, H. Li, Biomaterials 256 (2020) |
| [79] |
S. Epelman, K.J. Lavine, G.J. Randolph, Immunity 41 (2014) 21-35.
DOI URL PMID |
| [80] | S. Park, T.A. DiMaio, E.A. Scheef, C.M. Sorenson, N. Sheibani, Am. J. Physiol. Cell Physiol. 299 (2010) |
| [81] |
P. Lertkiatmongkol, D. Liao, H. Mei, Y. Hu, P.J. Newman, Curr. Opin. Hematol. 23 (2016) 253-259.
DOI URL PMID |
| [1] | Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing [J]. J. Mater. Sci. Technol., 2021, 93(0): 17-27. |
| [2] | Yongjin Sun, Juntao Zhang, Bi Chen, Yunlong Yang, Haiyan Li, Xin Niu, Qing Li, Weidong Wu, Zongping Xie, Yunfeng Chen, Fuyue Wu, Yang Wang. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence [J]. J. Mater. Sci. Technol., 2021, 63(0): 216-227. |
| [3] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
| [4] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
| [5] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
| [6] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
| [7] | Mina Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, Basavaraj Hungund. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties [J]. J. Mater. Sci. Technol., 2018, 34(6): 1035-1043. |
| [8] | Ma Jun,Zhao Nan,Betts Lexxus,Zhu Donghui. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review [J]. J. Mater. Sci. Technol., 2016, 32(9): 815-826. |
| [9] | Xueying Ge, Zhenxing Li, Quan Yuan. 1D Ceria Nanomaterials: Versatile Synthesis and Bio-application [J]. J. Mater. Sci. Technol., 2015, 31(6): 645-654. |
| [10] | Jayachandra Reddy Nakkala, Ekta Bhagat, Kitlangki Suchiang, Sudha Rani Sadras. Comparative Study of Antioxidant and Catalytic Activity of Silver and Gold Nanoparticles Synthesized From Costus pictus Leaf Extract [J]. J. Mater. Sci. Technol., 2015, 31(10): 986-994. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
