J. Mater. Sci. Technol. ›› 2015, Vol. 31 ›› Issue (6): 645-654.DOI: 10.1016/j.jmst.2015.01.008
• Orginal Article • Previous Articles Next Articles
Xueying Ge1, 3, Zhenxing Li2, 3, Quan Yuan1, *
Received:
2014-12-05
Online:
2015-06-20
Published:
2015-07-23
Contact:
*Corresponding author. Prof.; Ph.D.; Tel.: +86 27 68756362. E-mail address: Supported by:
Xueying Ge, Zhenxing Li, Quan Yuan. 1D Ceria Nanomaterials: Versatile Synthesis and Bio-application[J]. J. Mater. Sci. Technol., 2015, 31(6): 645-654.
(a) Possible formation mechanism of CeO2 nanorods[34] (Copyright 2007, American Chemical Society). (b) HRTEM images of the cubic ceria nanowires calcined at air-dried temperature
(c) TEM image of the sample obtained at a molar ratio of 1.0 Ce(NO3)4:10.0 HNO3:2.0 C18H37NH2: 40.0 NH4OH with 8 h growth period[38] (Copyright 2005, Springer). (d) Possible formation mechanism of CeO2 nanostructures[39] (Copyright 2008, Elsevier).
TEM image of CeO2 nanowires after removing AAM: (a) TEM image and selected-area electron diffraction (SAED) pattern[20] (Copyright 2004, Elsevier). (b) TEM image of a single nanowire and the SAED pattern (inset on the bottom-left)[41] (Copyright 2004, Elsevier).
(a) TEM image of CeO2 nanowires. (b) HRTEM image of an individual CeO2 nanowire, the bottom-left and the upper-right images showing the SAED pattern taken from the same nanowire and the magnified view of the middle part of the nanowire[54] (Copyright 2005, Royal Society of Chemistry). (c) Schematic illustration summarizing all the major morphological change involved in the synthesis of ceria nanotubes by oxidation complex dissolution reaction[55] (Copyright 2007, American Chemical Society).
Infarct volume and ischemic cell death in vivo. (a) Doses of ceria nanoparticles affect infarct volumes which is caused by stroke. (b) Brain slices from anterior (top) to posterioe (bottom), with intervals of 2 mm. (c) Representative slices, clearly showing that 0.5 and 0.7 mg/kg ceria nanoparticles can significantly reduce infarct volumes. (d) Microscopic analysis of cell death in brain slices using TUNEL. (e) The number of TUNEL-positive cells decreases markedly in the ceria-injectes group[70] (Copyright, 2012, John Wiley and Sons).
[1] S. Basu, P.S. Devi, H.S. Maiti, J. Mater. Res. , 19 (2004), pp. 3162-3171 [2] A.T. Bell, Science , 299 (2003), pp. 1688-1691 [3] S. Bernal, J. Kaspar, A. Trovarelli, Catal. Today , 50 (1999) 173-173 [4] D. Barreca, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, E. Comini, G. Sberveglieri, Nanotechnology , 18 (2007), pp. 125502-125508 [5] S. Chandramouleeswaran, S.T. Mhaske, A.A. Kathe, P.V. Varadarajan, V. Prasad, N. Vigneshwaran, Nanotechnology , 18 (2007), pp. 385702-385710 [6] M. Das, S. Patil, N. Bhargava, J. Kang, L.M. Riedel, S. Seal, J.J. Hickman, Biomaterials , 28 (2007), pp. 1918-1925 [7] S. Babu, J. Cho, J.M. Dowding, E. Heckert, C. Komanski, S. Das, J. Colon, C.H. Baker, M. Bass, W.T. Self, S. Seal, Chem. Commun. , 46 (2010), pp. 6915-6917 [8] L. Alili, M. Sack, A.S. Karakoti, S. Teuber, K. Puschmann, S.M. Hirst, C.M. Reilly, K. Zanger, W. Stahl, S. Das, S. Seal, P. Brenneisen, Biomaterials , 32 (2011), pp. 2918-2929 [9] K. Apel, H. Hirt, Annu. Rev. Plant Biol. , 55 (2004), pp. 373-399 [10] S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Nanomedicine , 8 (2013), pp. 1483-1508 [11] B.A. Rzigalinski, Technol. Cancer Res. Treat. , 4 (2005), pp. 651-659 [12] B.A. Rzigalinski, K. Meehan, R.M. Davis, Y. Xu, W.C. Miles, C.A. Cohen, Nanomedicine , 1 (2006), pp. 399-412 [13] J.L. Niu, A. Azfer, L.M. Rogers, X.H. Wang, P.E. Kolattukudy, Cardiovasc. Res. , 73 (2007), pp. 549-559 [14] M.P. Mattson, R.C. Haddon, A.M. Rao, J. Mol. Neurosci. , 14 (2000), pp. 175-182 [15] Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A.E. Nel, J.I. Zink, ACS Nano , 6 (2012), pp. 5366-5380 [16] X. Shi, A. von Dem Bussche, R.H. Hurt, A.B. Kane, H. Gao, Nat. Nanotechnol. , 6 (2011), pp. 714-719 [17] R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Nano Lett. , 5 (2005), pp. 2573-2577 [18] C. Korsvik, S. Patil, S. Seal, W.T. Self, Chem. Commun. (2007), pp. 1056-1058 [19] J.M. Perez, A. Asati, S. Nath, C. Kaittanis, Small , 4 (2008), pp. 552-556 [20] R.J. La, Z.A. Hu, H.L. Li, X.L. Shang, Y.Y. Yang, Mater. Sci. Eng. A , 368 (2004), pp. 145-148 [21] P.X. Huang, F. Wu, B.L. Zhu, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.H. Wu, D.Y. Song, J. Phys. Chem. B , 109 (2005), pp. 19169-19174 [22] C. Charitidis, P. Patsalas, S. Logothetidis, J. Phys. Conf. , 10 (2005), pp. 226-229 [23] A. Vantomme, Z.Y. Yuan, G.H. Du, B.L. Su, Langmuir , 21 (2005), pp. 1132-1135 [24] K.B. Zhou, Z.Q. Yang, S. Yang, Chem. Mater. , 19 (2007), pp. 1215-1217 [25] F.B. Gu, Z.H. Wang, D.M. Han, C. Shi, G.S. Guo, Mater. Sci. Eng. B , 139 (2007), pp. 62-68 [26] Q. Cui, X. Dong, J. Wang, M. Li, J. Rare Earth , 26 (2008), pp. 664-669 [27] Y.D. Liu, J. Goebl, Y.D. Yin, Chem. Soc. Rev. , 42 (2013), pp. 2610-2653 [28] C. Bouzigues, T. Gacoin, A. Alexandrou, ACS Nano , 5 (2011), pp. 8488-8505 [29] G. Cheng, W. Guo, L. Han, E. Chen, L. Kong, L. Wang, W. Ai, N. Song, H. Li, H. Chen, Toxicol. In Vitro , 27 (2013), pp. 1082-1088 [30] J. Chen, S. Patil, S. Seal, J.F. McGinnis, Nat. Nanotechnol. , 1 (2006), pp. 142-150 [31] G.R. Buettner, Anticancer Agents Med. Chem. , 11 (2011), pp. 341-346 [32] X. Cai, S.A. Sezate, S. Seal, J.F. McGinnis, Biomaterials , 33 (2012), pp. 8771-8781 [33] K.S. Lin, S. Chowdhury, Int. J. Mol. Sci. , 11 (2010), pp. 3226-3251 [34] D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu, W. Yu, Inorg. Chem. , 46 (2007), pp. 2446-2451 [35] C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology , 16 (2005), pp. 1454-1463 [36] M. Yada, M. Mihara, S. Mouri, M. Kuroki, T. Kijima, Adv. Mater. , 14 (2002), pp. 309-313 [37] R. Yang, L. Guo, J. Mater. Sci. , 40 (2005), pp. 1305-1307 [38] M. Hirano, M. Inagaki, J. Mater. Chem. , 10 (2000), pp. 473-477 [39] C. Pan, D. Zhang, L. Shi, J. Solid State Chem. , 181 (2008), pp. 1298-1306 [40] L. Yan, X. Xing, R. Yu, J. Deng, J. Chen, G. Liu, Physica B , 390 (2007), pp. 59-64 [41] G.S. Wu, T. Xie, X.Y. Yuan, B.C. Cheng, L.D. Zhan, Mater. Res. Bull. , 39 (2004), pp. 1023-1028 [42] R.O. Fuentes, L.M. Acuna, M.G. Zimic, D.G. Lamas, J.G. Sacanell, A.G. Leyva, R.T. Baker, Chem. Mater. , 20 (2008), pp. 7356-7363 [43] R. Yang, L. Guo, Chinese J. Inorg. Chem. , 20 (2004), pp. 152-158 [44] G. Chen, S. Sun, X. Sun, W. Fan, T. You, Inorg. Chem. , 48 (2009), pp. 1334-1338 [45] J. Fang, Z. Cao, D. Zhang, X. Shen, W. Ding, L. Shi, J. Rare Earth , 26 (2008), pp. 153-157 [46] D. Zhang, H. Fu, L. Shi, J. Fang, Q. Li, J. Solid State Chem. , 180 (2007), pp. 654-660 [47] J.Q. Wei, J. Ding, X.F. Zhang, D.H. Wu, Z.C. Wang, J.B. Luo, K.L. Wang, Mater. Lett. , 59 (2005), pp. 322-325 [48] Y.H. Li, J. Ding, J.F. Chen, C.L. Xu, B.Q. Wei, J. Liang, D.H. Wu, Mater. Res. Bull. , 37 (2002), pp. 313-318 [49] K.L. Yu, G.L. Ruan, Y.H. Ben, J.J. Zou, Mater. Sci. Eng. B , 139 (2007), pp. 197-200 [50] S.C. Laha, R. Ryoo, Chem. Commun. (2003), pp. 2138-2139 [51] W.H. Shen, X.P. Dong, Y.F. Zhu, H.R. Chen, J.L. Shi, Micropor. Mesopor. Mater. , 85 (2005), pp. 157-162 [52] X.B. Zhao, J. You, X.W. Lu, Z.G. Chen, J. Inorg. Mater. , 26 (2011), pp. 159-164 [53] X. Wang, Y.D. Li, Angew. Chem. Int. Ed. , 41 (2002), pp. 4790-4793 [54] B. Tang, L. Zhuo, J. Ge, G. Wang, Z. Shi, J. Niu, Chem. Commun. (2005), pp. 3565-3567 [55] K. Zhou, Z. Yang, S. Yang, Chem. Mater. , 19 (2007), pp. 1215-1217 [56] H. Mai, L. Sun, Y. Zhang, R. Si, W. Feng, H. Zhang, H. Liu, C. Yan, J. Phys. Chem. B , 109 (2005), pp. 24380-24385 [57] S.S. Deshmukh, M.H. Zhang, V.I. Kovalchuk, J.L. D'Itri, Appl. Catal. B , 45 (2003), pp. 135-145 [58] M.L. Dos Santos, R.C. Lima, C.S. Riccardi, R.L. Tranquilin, P.R. Bueno, J.A. Varela, E. Longo, Mater. Lett. , 62 (2008), pp. 4509-4511 [59] B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, A. Kachouane, Thin Solid Films , 379 (2000), pp. 23-27 [60] J.J. Miao, H. Wang, Y.R. Li, J.M. Zhu, J.J. Zhu, J. Cryst. Growth , 281 (2005), pp. 525-529 [61] R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Nanotechnology , 16 (2005), pp. 2502-2506 [62] J. Miao, H. Wang, Y. Li, J. Zhu, J. Zhu, J. Cryst. Growth , 281 (2005), pp. 525-529 [63] D. Zhang, L. Huang, J. Zhang, L. Shi, J. Mater. Sci. , 43 (2008), pp. 5647-5650 [64] F. Gao, Q. Lu, S. Komarneni, J. Nanosci. Nanotechnol. , 6 (2006), pp. 3812-3819 [65] X. Yang, C. Shao, Y. Liu, R. Mu, H. Guan, Thin Solid Films , 478 (2005), pp. 228-231 [66] S. Lee, S. Kim, J. Choi, Environ. Toxicol. Phar. , 28 (2009), pp. 86-91 [67] A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Angew. Chem. Int. Ed. , 48 (2009), pp. 2308-2312 [68] S. Patil, S. Reshetnikov, M.K. Haldar, S. Seal, S. Mallik, J. Phys. Chem. C , 111 (2007), pp. 8437-8442 [69] A. Clark, A. Zhu, K. Sun, H.R. Petty, J. Nanopart. Res. , 13 (2011), pp. 5547-5555 [70] C.K. Kim, T. Kim, I.Y. Choi, M. Soh, D. Kim, Y.J. Kim, H. Jang, H.S. Yang, J.Y. Kim, H.K. Park, S.P. Park, S. Park, T. Yu, B.W. Yoon, S.H. Lee, T. Hyeon, Angew. Chem. Int. Ed. , 51 (2012), pp. 11039-11043 [71] S.M. Hirst, A.S. Karakoti, R.D. Tyler, N. Sriranganathan, S. Seal, C.M. Reilly, Small , 5 (2009), pp. 2848-2856 [72] Y. Peng, X. Chen, G. Yi, Z. Gao, Chem. Commun. , 47 (2011), pp. 2916-2918 [73] D. Schubert, R. Dargusch, J. Raitano, S.W. Chan, Biochem. Bioph. Res. Co. , 1 (2006), pp. 86-91 [74] S. Patil, S.C. Kuiry, S. Seal, R. Vanfleet, J. Nanopart. Res. , 4 (2002), pp. 433-438 [75] N. Pourkhalili, A. Hosseini, A. Nili-Ahmadabadi, S. Hassani, M. Pakzad, M. Baeeri, A. Mohammadirad, M. Abdollahi, World J. Diabetes , 2 (2011), pp. 204-210 [76] N. Sanvicens, V. Gomez-Vicente, I. Masip, A. Messeguer, T.G. Cotter, J. Biol. Chem. , 279 (2004), pp. 39268-39278 [77] L. Kong, X. Cai, X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, Neurobiol. Dis. , 42 (2011), pp. 514-523 [78] S. Lin, X. Wang, Z. Ji, C.H. Chang, Y. Dong, H. Meng, Y. Liao, M. Wang, T. Song, S. Kohan, T. Xia, J.I. Zink, S. Lin, A.E. Nel, ACS Nano , 8 (2014), pp. 4450-4464 |
[1] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
[2] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
[3] | Jun-Tao Luo, Guo-Long Zang, Chuang Hu. An efficient 3D ordered mesoporous Cu sphere array electrocatalyst for carbon dioxide electrochemical reduction [J]. J. Mater. Sci. Technol., 2020, 55(0): 95-106. |
[4] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[5] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[6] | Shuming Wang, Xiaofang Zhang, Fenghua Kuang, Jiangshan Li, Yanxin Wang, Ruiping Wang, Yanru Wang, Xin Lin, Jianming Li. Preparation and properties of a new porous ceramic material used in clean energy field [J]. J. Mater. Sci. Technol., 2019, 35(7): 1255-1260. |
[7] | Meng Fanming, Fan Zhenghua, Zhang Cheng, Hu Youdi, Guan Tao, Li Aixia. Morphology-Controlled Synthesis of CeO2 Microstructures and Their Room Temperature Ferromagnetism [J]. J. Mater. Sci. Technol., 2017, 33(5): 444-451. |
[8] | Bin Yuan, Ludovico Cademartiri. Flexible One-Dimensional Nanostructures: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 607-615. |
[9] | Xiaoyi Shen, Yuan Liang, Yuchun Zhai, Zhiqiang Ning. Shape-controllable Synthesis of Ultrafine ZnO Powders of Different Morphologies [J]. J. Mater. Sci. Technol., 2013, 29(1): 44-48. |
[10] | Jiahong Zheng, Jiling Song, Qing Jiang, Jianshe Lian. Superhydrophobic Behavior and Optical Properties of ZnO Film Fabricated by Hydrothermal Method [J]. J Mater Sci Technol, 2012, 28(2): 103-108. |
[11] | Minfang Han, Ze Liu, Su Zhou, Lian Yu. Influence of Lithium Oxide Addition on the Sintering Behavior and Electrical Conductivity of Gadolinia Doped Ceria [J]. J Mater Sci Technol, 2011, 27(5): 460-464. |
[12] | Hu Wang, Juan Xie, Kangping Yan, Ming Duan. Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method [J]. J Mater Sci Technol, 2011, 27(2): 153-158. |
[13] | Xiaoyi Shen Yuchun Zhai Yang Sun Huimin Gu. Preparation of Monodisperse Spherical SiO2 by Microwave Hydrothermal Method and Kinetics of Dehydrated Hydroxyl [J]. J Mater Sci Technol, 2010, 26(8): 711-714. |
[14] | Hongliang ZHU, Deren YANG, Hui ZHANG. A Novel Hydrothermal Synthesis of Single Crystalline PbS Nanorods and Their Characterization [J]. J Mater Sci Technol, 2005, 21(05): 609-612. |
[15] | Xiwen SONG, Yongwang ZHAO, Zhefeng WANG, Jun PENG, Wenguang ZHAO, Shengli AN. Synthesis and Characterization of SmxGdyCe1-x-yO2-δ Nanopowders [J]. J Mater Sci Technol, 2005, 21(01): 131-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||