J. Mater. Sci. Technol. ›› 2023, Vol. 132: 81-89.DOI: 10.1016/j.jmst.2022.05.047
• Research Article • Previous Articles Next Articles
Xingyu Liua,1, Xiao-Lei Shib,1, Li Zhanga,*(
), Wei-Di Liuc, Yanling Yanga, Zhi-Gang Chenb,*(
)
Received:2022-04-19
Revised:2022-05-13
Accepted:2022-05-21
Published:2023-01-01
Online:2022-06-25
Contact:
Li Zhang,Zhi-Gang Chen
About author:zhigang.chen@qut.edu.au (Z.-G. Chen).1 These author contributed equally to this work.
Xingyu Liu, Xiao-Lei Shi, Li Zhang, Wei-Di Liu, Yanling Yang, Zhi-Gang Chen. One-step post-treatment boosts thermoelectric properties of PEDOT:PSS flexible thin films[J]. J. Mater. Sci. Technol., 2023, 132: 81-89.
Fig. 1. (a) Schematic diagram of fabricating PEDOT:PSS film by post-treating with a rationally designed solution composed of polar solvent dimethylacetamide (DMAC), deionized water, and organic reducing agent L-ascorbic acid (LAA). The inset optical image shows that the as-fabricated film exhibits high flexibility. (b) Schematic illustration of the effects on PEDOT:PSS structures by post-treatment with H2O, DMAC, and LAA. The as-achieved power factor hits ~65 μW m?1 K?2 at 360 K post-treated with 80 vol.% DMAC solution and 0.5 mol L?1 LAA.
Fig. 2. (a) Thermoelectric properties including σ, S, and S2σ of PEDOT:PSS films by different volume percentages of DMAC in DMAC/H2O solution. (b) σ, S, and S2σ by different LAA concentrations in DMAC/H2O/LAA solution. (c) Temperature-dependent σ, S, and S2σ by 80 vol.% DMAC solution and 0.5 mol L?1 LAA. (d) Comparison of S2σ between this work and previous literature [26,37,[44], [45], [46]]. (e) ln σ as a function of T?1/4 with a fitting line and (f) S as a function of T1/2 with fitting lines to the Mott variable range hopping (VRH) model of pristine film and the film treated by DMAC/0.5 LAA solutions.
Fig. 3. (a) X-ray photoelectron spectroscopy (XPS) and (b) X-ray diffraction (XRD) results of PEDOT:PSS films without and with post-treating with 80 vol.% DMAC solution and 0.5 mol L?1 LAA. The inset in (a) shows enlarged XPS results near 164 eV. (c) Raman spectrum before and after post-treating with DMAC/H2O solutions with different volume percentages of DMAC. (d) Raman spectrum before and after post-treating with DMAC/H2O/LAA solutions with different concentrations of LAA. The volume percentages of DMAC are all 80%.
Fig. 4. The scanning electron microscopy (SEM) cross-sectional images of (a) pristine PEDOT:PSS film, (b) PEDOT:PSS film post-treated with 100% DMAC, (c) PEDOT:PSS film post-treated with 80 vol.% DMAC solution, and (d) PEDOT:PSS films post-treated with 80 vol.% DMAC solution and 0.5 mol L?1 LAA.
Fig. 5. Atomic force microscopy (AFM) images of PEDOT:PSS thin films before and after post-treatments. Height images: (a) pristine PEDOT:PSS film, (b) PEDOT:PSS film post-treated with 80 vol.% DMAC solution, and (c) PEDOT:PSS film post-treated with 80 vol.% DMAC solution and 0.5 mol L?1 LAA. (d-f) Corresponding phase images and (g-i) three-dimensional (3D) images. The sizes of all images are 1 μm × 1 μm.
Fig. 6. (a) A thermoelectric device composed of as-fabricated PEDOT:PSS films with the polyimide (PI) substrate. (b, c) Wearability of the as-designed device. (d) Open-circuit voltage Voc as a function of temperature difference ΔT. (e) Voc and output power P versus current I at a ΔT of 25 K.
| Material | Couple number | ∆T (K) | Open-circuit voltage, Voc (mV) | Output power, P (nW) | Output power density (μW cm−2) | Refs. |
|---|---|---|---|---|---|---|
| PEDOT:PSS/Te | 9 | 40 | 13.4 | 47.7 | 57.2 | [ |
| PEDOT:PSS/Te/Cu7Te4 | 8 | 39.1 | 31.2 | 94.7 | 39.5 | [ |
| p-type: PEDOT:PSS; n-type: Cu0.6Ni0.4 | 4 | 30 | 10.4 | 121.08 | 98.115 | [ |
| p-type: PEDOT:PSS; n-type: nickel | 144 | 65 | 260 | 46 | - | [ |
| PEDOT:PSS | 14 | 12 | 2.9 | - | ∼1 | [ |
| PEDOT:PSS | 5 | 25 | 2 | - | - | [ |
| PEDOT:PSS | 16 | 8 | 4.6 | - | - | [ |
| PEDOT:PSS | 30 | 20 | 10.5 μW | 1.21 | [ | |
| PEDOT:PSS | 8 | 25 | 3.4 | 23 | 13.31 | This work |
Table 1. Device performance (power generation) of PEDOT:PSS-based films.
| Material | Couple number | ∆T (K) | Open-circuit voltage, Voc (mV) | Output power, P (nW) | Output power density (μW cm−2) | Refs. |
|---|---|---|---|---|---|---|
| PEDOT:PSS/Te | 9 | 40 | 13.4 | 47.7 | 57.2 | [ |
| PEDOT:PSS/Te/Cu7Te4 | 8 | 39.1 | 31.2 | 94.7 | 39.5 | [ |
| p-type: PEDOT:PSS; n-type: Cu0.6Ni0.4 | 4 | 30 | 10.4 | 121.08 | 98.115 | [ |
| p-type: PEDOT:PSS; n-type: nickel | 144 | 65 | 260 | 46 | - | [ |
| PEDOT:PSS | 14 | 12 | 2.9 | - | ∼1 | [ |
| PEDOT:PSS | 5 | 25 | 2 | - | - | [ |
| PEDOT:PSS | 16 | 8 | 4.6 | - | - | [ |
| PEDOT:PSS | 30 | 20 | 10.5 μW | 1.21 | [ | |
| PEDOT:PSS | 8 | 25 | 3.4 | 23 | 13.31 | This work |
| [1] |
T. Sun, S. Chen, H. Sun, J. Li, X. Wu, L. Jin, L. Wang, W. Jiang, Compos. Commun. 27 (2021) 100871.
DOI URL |
| [2] | L. Zhang, X.L. Shi, Y.L. Yang, Z.G. Chen, Mater. Today 46 (2021) 62-108. |
| [3] |
Q. Sun, M. Li, X.L. Shi, S.D. Xu, W.D. Liu, M. Hong, W.Y. Lyu, Y. Yin, M. Dargusch, J. Zou, Z.G. Chen, Adv. Energy Mater. 11 (2021) 2100544.
DOI URL |
| [4] | M. Li, M. Hong, X. Tang, Q. Sun, W.Y. Lyu, S.D. Xu, L.Z. Kou, M. Dargusch, J. Zou, Z.G. Chen, Nano Energy 73 (2020) 104740. |
| [5] | L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M. G. Kanatzidis, Nature 508 (2014) 373-377. |
| [6] |
X.Y. Mao, X.L. Shi, L.C. Zhai, W.D. Liu, Y.X. Chen, H. Gao, M. Li, D.Z. Wang, H. Wu, Z.H. Zheng, Y.F. Wang, Q. Liu, Z.G. Chen, J. Mater. Sci. Technol. 114 (2022) 55-61.
DOI URL |
| [7] |
X.L. Shi, W.D. Liu, M. Li, Q. Sun, S.D. Xu, D. Du, J. Zou, Z.G. Chen, Adv. Energy Mater. 12 (2022) 2200670.
DOI URL |
| [8] | S. Perumal, M. Samanta, T. Ghosh, U.S. Shenoy, A.K. Bohra, S. Bhattacharya, A. Singh, U.V. Waghmare, K. Biswas, Joule 3 (2019) 2565-2580. |
| [9] |
D.Z. Wang, W.D. Liu, X.L. Shi, H. Gao, H. Wu, L.C. Yin, Y. Zhang, Y. Wang, X. Wu, Q. Liu, Z.G. Chen, J. Mater. Sci. Technol. 106 (2022) 249-256.
DOI URL |
| [10] |
Q. Zou, H. Shang, D. Huang, B. Xie, L. Zhang, K. Wang, H. Dong, C. Li, H. Gu, F. Ding, Appl. Phys. Lett. 120 (2022) 023903.
DOI URL |
| [11] |
L. Pan, X.L. Shi, C. Song, W.D. Liu, Q. Sun, C. Lu, Q. Liu, Y. Wang, Z.G. Chen, Adv. Funct. Mater. (2022) 2202927, doi: 10.1002/adfm.202202927.
DOI URL |
| [12] |
S. Xu, X.L. Shi, M. Dargusch, C. Di, J. Zou, Z.G. Chen, Prog. Mater. Sci. 121 (2021) 100840.
DOI URL |
| [13] |
H.J. Lee, G. Anoop, H.J. Lee, C. Kim, J.W. Park, J. Choi, H. Kim, Y.J. Kim, E. Lee, S.G. Lee, Y.M. Kim, J.H. Lee, J.Y. Jo, Energy Environ. Sci. 9 (2016) 2806-2811.
DOI URL |
| [14] |
M. Tonga, L. Wei, P.S. Taylor, E. Wilusz, L. Korugic-Karasz, F.E. Karasz, P.M. Lahti, ACS Appl. Mater. Interfaces 9 (2017) 8975-8984.
DOI URL |
| [15] |
Y. Li, Q. Lou, J. Yang, K. Cai, Y. Liu, Y. Lu, Y. Qiu, Y. Lu, Z. Wang, M. Wu, J. He, S. Shen, Adv. Funct. Mater. 32 (2022) 2106902.
DOI URL |
| [16] |
B.X. Dong, Z. Liu, J.W. Onorato, T. Ma, J. Strzalka, P. Bennington, C.K. Luscombe, C. K. Ober, P.F. Nealey, S.N. Patel, Adv. Funct. Mater. 31 (2021) 2106991.
DOI URL |
| [17] | M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, J. Mater. Chem. A 7 (2019) 26421-26428. |
| [18] | Y.X. Chen, X.L. Shi, Z.H. Zheng, F. Li, W.D. Liu, W.Y. Chen, X.R. Li, G.X. Liang, J.T. Luo, P. Fan, Z.G. Chen, Mater. Today Phys. 16 (2021) 100306. |
| [19] | C. Sun, X. Wang, M.A. Auwalu, S. Cheng, W. Hu, EcoMat 3 (2021) e12094. |
| [20] | C. Yan, R. Ma, G. Cai, T. Liu, J. Zhu, J. Wang, Y. Li, J. Huang, Z. Luo, Y. Xiao, X. Lu, T. Yang, X. Zhan, H. Yan, G. Li, EcoMat 2 (2020) e12061. |
| [21] |
B. Hu, X.L. Shi, J. Zou, Z.G. Chen, Chem. Eng. J. 437 (2022) 135268.
DOI URL |
| [22] |
J. Luo, D. Billep, T. Blaudeck, E. Sheremet, R.D. Rodriguez, D.R.T. Zahn, M. Toader, M. Hietschold, T. Otto, T. Gessner, J. Appl. Phys. 115 (2014) 054908.
DOI URL |
| [23] | J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahn, T. Gessner, J. Mater. Chem. A 1 (2013) 7576-7583. |
| [24] |
C.M. Palumbiny, F. Liu, T.P. Russell, A. Hexemer, C. Wang, P. Müller-Buschbaum, Adv. Mater. 27 (2015) 3391-3397.
DOI URL |
| [25] |
N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.R. Jo, B.J. Kim, K. Lee, Adv. Mater. 26 (2014) 2268-2272.
DOI URL |
| [26] |
Z. Fan, D. Du, Z. Yu, P. Li, Y. Xia, J. Ouyang, ACS Appl. Mater. Interfaces 8 (2016) 23204-23211.
DOI URL |
| [27] |
Z. Yu, Y. Xia, D. Du, J. Ouyang, ACS Appl. Mater. Interfaces 8 (2016) 11629-11638.
DOI URL |
| [28] |
I. Paulraj, T.F. Liang, T.S. Yang, C.H. Wang, J.L. Chen, Y.W. Wang, C.J. Liu, ACS Appl. Energy Mater. 3 (2020) 12447-12459.
DOI URL |
| [29] | Y. Xia, J. Ouyang, J. Mater. Chem. 21 (2011) 4927-4936. |
| [30] | S. Zhang, Z. Fan, X. Wang, Z. Zhang, J. Ouyang, J. Mater. Chem. A 6 (2018) 7080-7087. |
| [31] | N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, J.P. Simonato, J. Mater. Chem. C 2 (2014) 1278-1283. |
| [32] |
X. Li, C. Liu, W. Zhou, X. Duan, Y. Du, J. Xu, C. Li, J. Liu, Y. Jia, P. Liu, Q. Jiang, C. Luo, C. Liu, F. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 8138-8147.
DOI URL |
| [33] |
N. Saxena, J. Keilhofer, A.K. Maurya, G. Fortunato, J. Overbeck, P. Müller-Buschbaum, ACS Appl. Energy Mater. 1 (2018) 336-342.
DOI URL |
| [34] |
T.A. Yemata, Y. Zheng, A.K.K. Kyaw, X. Wang, J. Song, W.S. Chin, J. Xu, RSC Adv. 10 (2020) 1786-1792.
DOI URL |
| [35] | S.H. Lee, H. Park, S. Kim, W. Son, I.W. Cheong, J.H. Kim, J. Mater. Chem. A 2 (2014) 7288-7294. |
| [36] |
I. Paulraj, T.F. Liang, T.S. Yang, C.H. Wang, J.L. Chen, Y.W. Wang, C.J. Liu, ACS Appl. Mater. Interfaces 13 (2021) 42977-42990.
DOI URL |
| [37] |
Z. Zhu, C. Liu, Q. Jiang, H. Shi, F. Jiang, J. Xu, J. Xiong, E. Liu, J. Mater. Sci. Mater. El. 26 (2015) 8515-8521.
DOI URL |
| [38] |
S. Xu, M. Hong, X.L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, Z.G. Chen, Chem. Mater. 31 (2019) 5238-5244.
DOI URL |
| [39] |
S. Xu, M. Hong, X. Shi, M. Li, Q. Sun, Q. Chen, M. Dargusch, J. Zou, Z.G. Chen, Energy Environ. Sci. 13 (2020) 3480-3488.
DOI URL |
| [40] |
S. Xu, M. Li, M. Hong, L. Yang, Q. Sun, S. Sun, W. Lyu, M. Dargusch, J. Zou, Z.G. Chen, J. Mater. Sci. Technol. 124 (2022) 252-259.
DOI URL |
| [41] |
Q. Wei, M. Mukaida, Y. Naitoh, T. Ishida, Adv. Mater. 25 (2013) 2831-2836.
DOI URL |
| [42] | Q. Li, Q. Zhou, L. Wen, W. Liu, J. Mater. 6 (2020) 119-127. |
| [43] | X. Huang, L. Deng, F. Liu, Q. Zhang, G. Chen, Energy Mater. Adv. 2021 (2021) 1572537. |
| [44] |
S. Liu, H. Deng, Y. Zhao, S. Ren, Q. Fu, RSC Adv. 5 (2015) 1910-1917.
DOI URL |
| [45] | Z. Sun, M. Shu, W. Li, P. Li, Y. Zhang, H. Yao, S. Guan, Polymer 192 (2020) 122328. |
| [46] |
Y. Xu, Z. Liu, X. Wei, J. Wu, J. Guo, B. Zhao, H. Wang, S. Chen, Y. Dou, Synth. Met. 271 (2021) 116628.
DOI URL |
| [47] | A .M. Nardes R. A .J. Janssen M. Kemerink, Kemerink, Adv. Funct. Mater.. 18 (2008) 865-871. |
| [48] |
T.E. Park, J. Suh, D. Seo, J. Park, D.Y. Lin, Y.S. Huang, H.J. Choi, J. Wu, C. Jang, J. Chang, Appl. Phys. Lett. 107 (2015) 223107.
DOI URL |
| [49] |
X. Huang, L. Deng, F. Liu, Z. Liu, G. Chen, Chem. Eng. J. 417 (2021) 129230.
DOI URL |
| [50] |
Y. Xia, K. Sun, J. Ouyang, Adv. Mater. 24 (2012) 2436-2440.
DOI URL |
| [51] |
G. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12 (2013) 719-723.
DOI URL PMID |
| [52] |
N. Kim, B.H. Lee, D. Choi, G. Kim, H. Kim, J.R. Kim, J. Lee, Y.H. Kahng, K. Lee, Phys. Rev. Lett. 109 (2012) 106405.
DOI URL |
| [53] | E. Hosseini, V. Ozhukil Kollath, K. Karan, J. Mater. Chem. C 8 (2020) 3982-3990. |
| [54] | A.J. Olivares, I. Cosme, M.E. Sanchez-Vergara, S. Mansurova, J.C. Carrillo, H.E. Martinez, A. Itzmoyotl, Polymers 11 (2019) 1034. |
| [55] | C. Wang, K. Sun, J. Fu, R. Chen, M. Li, Z. Zang, X. Liu, B. Li, H. Gong, J. Ouyang, Adv. Sustain. Syst. 2 (2018) 1800085. |
| [56] |
D.A. Mengistie, C.H. Chen, K.M. Boopathi, F.W. Pranoto, L.J. Li, C.W. Chu, ACS Appl. Mater. Interfaces 7 (2015) 94-100.
DOI URL |
| [57] |
Q. Meng, Q. Jiang, K. Cai, L. Chen, Org. Electron. 64 (2019) 79-85.
DOI URL |
| [58] |
Y. Lu, Y. Qiu, Q. Jiang, K. Cai, Y. Du, H. Song, M. Gao, C. Huang, J. He, D. Hu, ACS Appl. Mater. Interfaces 10 (2018) 42310-42319.
DOI URL |
| [59] |
B.W. Boudouris, S. Yee, J. Appl. Polym. Sci. 134 (3)(2017), doi: 10.1002/APP.44456.
DOI URL |
| [60] |
Z. Li, H. Sun, C.L. Hsiao, Y. Yao, Y. Xiao, M. Shahi, Y. Jin, A. Cruce, X. Liu, Y. Jiang, W. Meng, F. Qin, T. Ederth, S. Fabiano, W.M. Chen, X. Lu, J. Birch, J.W. Brill, Y. Zhou, X. Crispin, F. Zhang, Adv. Electron. Mater. 4 (2018) 1700496.
DOI URL |
| [61] |
L. Jin, T. Sung, W. Zhao, L. Wang, W. Jiang, J. Power Sources 496 (2021) 229838.
DOI URL |
| [62] |
T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, G. J. Snyder, Nat. Commun. 11 (2020) 572.
DOI URL |
| [1] | Shengduo Xu, Meng Li, Min Hong, Lei Yang, Qiang Sun, Shuai Sun, Wanyu Lyu, Matthew Dargusch, Jin Zou, Zhi-Gang Chen. Optimal array alignment to deliver high performance in flexible conducting polymer‐based thermoelectric devices [J]. J. Mater. Sci. Technol., 2022, 124(0): 252-259. |
| [2] | Xiaofang Liu, Hengyang Wang, Bin Zhang, Sikang Zheng, Yao Chen, Hong Zhang, Xianhua Chen, Guoyu Wang, Xiaoyuan Zhou, Guang Han. Attaining enhanced thermoelectric performance in p-type (SnSe)1-x(SnS2)x produced via sintering their solution-synthesized micro/nanostructures [J]. J. Mater. Sci. Technol., 2022, 120(0): 205-213. |
| [3] | Zhi-Gang Chen, Wei-Di Liu. Thermoelectric coolers: Infinite potentials for finite localized microchip cooling [J]. J. Mater. Sci. Technol., 2022, 121(0): 256-262. |
| [4] | Zhang Zipei, Li Wenhao, Yu Lu, Wei Sitong, Wei Shikai, Ji Zhen, Song Weiyu, Zheng Shuqi. Defect engineering synergistically modulates power factor and thermal conductivity of CuGaTe2 for ultra-high thermoelectric performance [J]. J. Mater. Sci. Technol., 2022, 128(0): 213-220. |
| [5] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
| [6] | Xuan Zhao, Zehong Chen, Hao Zhuo, Yijie Hu, Ge Shi, Bing Wang, Haihong Lai, Sherif Araby, WenjiaHan , Xinwen Peng, Linxin Zhong. Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting [J]. J. Mater. Sci. Technol., 2022, 120(0): 150-158. |
| [7] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
| [8] | Hyun Ju, Dabin Park, Minsu Kim, Jooheon Kim. Copper telluride with manipulated carrier concentrations for high-performance solid-state thermoelectrics [J]. J. Mater. Sci. Technol., 2022, 129(0): 190-195. |
| [9] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [10] | Lu Yu, Zipei Zhang, Juan Li, Wenhao Li, Shikai Wei, Sitong Wei, Guiwu Lu, Weiyu Song, Shuqi Zheng. Enhanced thermoelectric performance in n-type Mg3.2Sb1.5Bi0.5 doping with lanthanides at the Mg site [J]. J. Mater. Sci. Technol., 2022, 127(0): 108-114. |
| [11] | Qing Wang, Zhiliang Li, Xiaofeng Yang, Xin Qian, Linjuan Guo, Jianglong Wang, Dan Zhang, Shu-Fang Wang. Improving electrical and thermal properties synchronously via introducing CsPbBr3 QDs into higher manganese silicides [J]. J. Mater. Sci. Technol., 2022, 111(0): 279-286. |
| [12] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
| [13] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
| [14] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
| [15] | Xinliang Xie, Shuo Yin, Rija-nirina Raoelison, Chaoyue Chen, Christophe Verdy, Wenya Li, Gang Ji, Zhongming Ren, Hanlin Liao. Al matrix composites fabricated by solid-state cold spray deposition: A critical review [J]. J. Mater. Sci. Technol., 2021, 86(0): 20-55. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
