J. Mater. Sci. Technol. ›› 2022, Vol. 117: 251-258.DOI: 10.1016/j.jmst.2021.12.019
• Research Article • Previous Articles
Yifeng Wanga,b,*(), Yilin Songa, Kaikai Songa, Lin Pana,b, Changchun Chena,b,*(
), Kunihito Koumotoc,d, Qingfeng Liue
Received:
2021-10-11
Revised:
2021-11-19
Accepted:
2021-12-05
Published:
2022-02-24
Online:
2022-08-01
Contact:
Yifeng Wang,Changchun Chen
About author:
ccc@njtech.edu.cn (C. Chen).Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation[J]. J. Mater. Sci. Technol., 2022, 117: 251-258.
Fig. 1. (a) Illustration of the hexagonal crystal structure of Bi2Te3. (b) Diagram of the experimental process for the LASE-SPS approach of Bi2Te3, through which highly-oriented fine-grained bulks can be fabricated by restacking of exfoliated grains. The inset illustrates the dissociation of terminal Te atoms and the formation of Te vacancies on the fracture along the vdW gaps.
Fig. 2. XRD patterns of (a) the pristine and LASE powders, (b) the bulk samples in the in- and cross-plane directions, and (c) an enlarged local view of Te impurity in (b). The circles indicate the (015) peak of the Bi2Se3 phase (PDF#85-0519) and the triangles represent the (100) and (101) peaks of the Te phase (PDF#36-1452).
Fig. 3. (a) Plot of the particle size distribution for the pristine and LASE powders, (b) SEM image of the fracture surface for the pristine bulks, (c) an enlarged view of the local area in the dashed frame in (b), (d) SEM image of LASE sample's fracture surface. The white arrows inside indicate the press direction in the SPS process.
Fig. 4. Electrical properties of pristine and LASE Bi2Te2.7Se0.3 samples along the in- and cross-plane directions from 303 K to 573 K, including (a) electrical conductivity, (b) Seebeck coefficient, (c) anisotropy ratios of electrical conductivity and Seebeck coefficient, and (d) power factor. The insets in (a), (b), and (d) display the ratio of each parameter of the LASE sample to that of the pristine one in the studied temperature range.
Sample | LF | n (1019 cm-3) | μ (cm2 V-1 s-1) | m* (mo) | τ (fs) | ρ (g cm-3) |
---|---|---|---|---|---|---|
Pristine | 0.24 | 7.5 | 108.0 | 1.24 | 76 | 7.58 |
LASE | 0.28 | 9.4 | 104.9 | 1.23 | 73 | 7.56 |
Table 1. The Lotgering factor LF, carrier concentration n, carrier mobility μ, effective mass m* (mo), relaxation time τ, and density ρ for both pristine and LASE samples along the in-plane direction at room temperature.
Sample | LF | n (1019 cm-3) | μ (cm2 V-1 s-1) | m* (mo) | τ (fs) | ρ (g cm-3) |
---|---|---|---|---|---|---|
Pristine | 0.24 | 7.5 | 108.0 | 1.24 | 76 | 7.58 |
LASE | 0.28 | 9.4 | 104.9 | 1.23 | 73 | 7.56 |
Fig. 5. (a) Total thermal conductivity, (b) electronic thermal conductivity and Lorenz number (in the inset), and (c) lattice and bipolar thermal conductivity and the anisotropy ratio (in the inset) of Bi2Te2.7Se0.3 pristine and LASE samples along the in-plane and cross-plane directions from 303 K to 573 K.
Fig. 6. (a) Temperature dependence of ZT for all samples both in the in-plane and cross-plane directions. (b) Maximal ZT values of our samples in comparison with some representative reference data [[32], [33], [34], [35], [36]] in recent years.
[1] |
T.J. Zhu, Y.T. Liu, C.G. Fu, J.P. Heremans, J.G. Snyder, X.B. Zhao, Adv. Mater. 29 (2017) 1605884.
DOI URL |
[2] |
D.F. Ding, C.G. Lu, Z.Y. Tang, Adv. Mater. Interfaces 4 (2017) 1700517.
DOI URL |
[3] |
J. Ko, J.Y. Kim, S.M. Choi, Y.S. Lim, W.S. Seo, K.H. Lee, J. Mater. Chem. A 1 (2013) 12791.
DOI URL |
[4] |
H. Itahara, W.S. Seo, S. Lee, H. Nozaki, T. Tani, K. Koumoto, J. Am. Chem. Soc. 127 (2005) 6367-6373.
DOI URL |
[5] |
T. Tani, S. Isobe, W.S. Seo, K. Koumoto, J. Mater. Chem. 11 (2001) 2324-2328.
DOI URL |
[6] |
Z.L. Tang, L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, J. Mater. Chem. C 3 (2015) 10597-10603.
DOI URL |
[7] |
L.P. Hu, H.J. Wu, T.J. Zhu, C.G. Fu, J.Q. He, P.J. Ying, X.B. Zhao, Adv. Energy Mater. 5 (2015) 1500411.
DOI URL |
[8] |
L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, Adv. Funct. Mater. 24 (2014) 5211-5218.
DOI URL |
[9] |
X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y.C. Lan, D. Wang, Gang Chen, Z.F. Ren, Nano Lett. 10 (2010) 3373-3378.
DOI URL |
[10] |
S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348 (2015) 109-114.
DOI URL |
[11] |
W.S. Liu, Q.Y. Zhang, Y.C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D.Z. Wang, G. Chen, Z.F. Ren, Adv. Energy Mater. 1 (2011) 577-587.
DOI URL |
[12] | B. Jabar, X.Y. Qin, D. Li, J. Zhang, A. Mansoor, H.X. Xin, C.J. Song, L.L. Huang, J. Mater. Chem. A 32 (2019) 19120-19129. |
[13] |
B. Jabar, X.Y. Qin, A. Mansoor, H.W. Ming, L.L. Huang, M.H. Danish, J. Zhang, D. Li, C. Zhu, H.X. Xin, C.J. Song, Nano Energy 80 (2021) 105512.
DOI URL |
[14] |
L. Pan, L. Zhao, X.X. Zhang, C.C. Chen, P.P. Yao, C.L. Jiang, X.D. Shen, Y.N. Lyu, C.H. Lu, L.D. Zhao, Y.F. Wang, ACS Appl. Mater. Interfaces 11 (2019) 21603-21609.
DOI URL |
[15] |
Y. Gu, X.L. Shi, L. Pan, W.D. Liu, Q. Sun, X. Tang, L.Z. Kou, Q.F. Liu, Y.F. Wang, Z.G. Chen, Adv. Funct. Mater. 31 (2021) 2101289.
DOI URL |
[16] |
B. Jabar, X.Y. Qin, A. Mansoor, H.W. Ming, L.L. Huang, J. Zhang, M.H. Danish, D. Li, C. Zhu, J.H. Zhang, H.X. Xin, C.J. Song, Compos. Pt. B-Eng. 197 (2020) 108151.
DOI URL |
[17] |
D. Teweldebrhan, V. Goyal, A.A. Balandin, Nano Lett 10 (2010) 1209-1218.
DOI PMID |
[18] |
Y.J. Baek, J.H. Beck, S.Y. Son, J.B. Kim, S.H. Yang, Y.H. Kang, S.K. Hyun, J. Nanosci. Nanotechnol. 19 (2019) 1533-1537.
DOI URL |
[19] | X.T. Dai, Z.Y. Huang, F.Q. Zu ,J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34 (2019) 840-844. |
[20] |
C.H. Lin, W.T. Yen, Y.F. Tsai, H.J. Wu, ACS Appl. Energ. Mater. 3 (2020) 1311-1318.
DOI URL |
[21] |
X. Chen, F.G. Cai, R. Dong, X.B. Lei, R.Q. Sui, L.X. Qiu, Z.L. Zeng, W. Sun, H. Zheng, Q.Y. Zhang, J. Mater. Sci.-Mater. Electron. 31 (2020) 4924-4930.
DOI URL |
[22] |
Y. Gu, K.K. Song, X.H. Hu, C.C. Chen, L. Pan, C.H. Lu, X.D. Shen, Kuni-hito Koumoto, Y.F. Wang, ACS Appl. Mater. Interfaces 12 (2020) 41687-41695.
DOI URL |
[23] |
N.N. Yang, L. Pan, C.C. Chen, Y.F. Wang, J. Alloy. Compd. 858 (2021) 157748.
DOI URL |
[24] |
L. Pan, J.Y. Zhang, C.C. Chen, Y.f. Wang, Scr. Mater. 178 (2020) 376-381.
DOI URL |
[25] | C. Bourgès, T. Barbier, G. Guélou, P. Vaqueiro, V.A. Powell, O.I. Lebedev, N. Bar-rier, Y. Kinemuchi, E. Guilmeau, J.Eur.Ceram.Soc. 36(2016)1183-1189. |
[26] |
J.M. Schultz, J.P. McHugh, W.A. Tiller, J. Appl. Phys. 33 (1962) 2443-2450.
DOI URL |
[27] |
C.H. Zhang, C.X. Zhang, H.K. Ng, Q.H. Xiong, Sci. China-Mater. 62 (2018) 389-398.
DOI URL |
[28] | J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, Q. Wang, B-Solid State Mater. Adv. Technol. 117 (2005) 334-338. |
[29] |
J.J. Shen, L.P. Hu, T.J. Zhu, X.B. Zhao, Appl. Phys. Lett. 99 (2011) 124102.
DOI URL |
[30] |
C.H. Zhang, M. De La Mata, Z. Li, F.J. Belarre, J. Arbiol, K.A. Khor, D. Poletti, B.B. Zhu, Q.Y. Yan, Q.H. Xiong, Nano Energy 30 (2016) 630-638.
DOI URL |
[31] |
G. Salussolia, E. Barbieri, N.M. Pugnoc, L. Botto, J. Mech. Phys. Solids 134 (2020) 103764.
DOI URL |
[32] |
Y.H. Min, J.W. Roh, H. Yang, M. Park, S.I. Kim, S. Hwang, S.M. Lee, K.H. Lee, U. Jeong, Adv. Mater. 25 (2013) 1425-1429.
DOI URL |
[33] |
Y.H. Min, G. Park, B. Kim, A. Giri, J. Zeng, J.W. Roh, S.I. Kim, K.H. Lee, U. Jeong, ACS Nano 9 (2015) 6843-6853.
DOI URL |
[34] |
B. Zhu, Y. Yu, X.Y. Wang, F.Q. Zu, Z.Y. Huang, J. Mater. Sci. 52 (2017) 8526-8537.
DOI URL |
[35] |
X. Chen, F.G. Cai, C.R. Liu, R. Dong, L.X. Qiu, L.L. Jiang, G.C. Yuan, Q.Y. Zhang, Phys. Status Solidi-Rapid Res. Lett. 14 (2020) 1900679.
DOI URL |
[36] |
S.S. Lee, I. Jang, J.S. Rhyee, S.J. Hong, S.J. Yoo, I.K. Park, Appl. Surf. Sci. 548 (2021) 149200.
DOI URL |
[1] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
[2] | Qing Wang, Zhiliang Li, Xiaofeng Yang, Xin Qian, Linjuan Guo, Jianglong Wang, Dan Zhang, Shu-Fang Wang. Improving electrical and thermal properties synchronously via introducing CsPbBr3 QDs into higher manganese silicides [J]. J. Mater. Sci. Technol., 2022, 111(0): 279-286. |
[3] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[4] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[5] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[6] | Seong-Tae Kim, Jong Min Park, Kwi-Il Park, Sang-Eun Chun, Ho Seong Lee, Pyuck-Pa Choi, Seonghoon Yi. Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix [J]. J. Mater. Sci. Technol., 2021, 94(0): 175-182. |
[7] | Sining Wang, Lizhong Su, Yuting Qiu, Yu Xiao, Li-Dong Zhao. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70(0): 67-72. |
[8] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[9] | Huiping Hu, Kaiyang Xia, Yuechu Wang, Chenguang Fu, Tiejun Zhu, Xinbing Zhao. Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials [J]. J. Mater. Sci. Technol., 2021, 91(0): 241-250. |
[10] | Zhiyu Chen, Juan Li, Jing Tang, Fujie Zhang, Yan Zhong, Hangtian Liu, Ran Ang. Boosting thermoelectrics by alloying Cu2Se in SnTe-CdTe compounds [J]. J. Mater. Sci. Technol., 2021, 89(0): 45-51. |
[11] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[12] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
[13] | Zhuang-Hao Zheng, Jun-Yu Niu, Dong-Wei Ao, Bushra Jabar, Xiao-Lei Shi, Xin-Ru Li, Fu Li, Guang-Xing Liang, Yue-Xing Chen, Zhi-Gang Chen, Ping Fan. In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films [J]. J. Mater. Sci. Technol., 2021, 92(0): 178-185. |
[14] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[15] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||