J. Mater. Sci. Technol. ›› 2022, Vol. 106: 249-256.DOI: 10.1016/j.jmst.2021.08.020
• Research Article • Previous Articles Next Articles
De-Zhuang Wanga, Wei-Di Liub,c, Xiao-Lei Shib,c, Han Gaod, Hao Wua, Liang-Cao Yina, Yuewen Zhangd, Yifeng Wange, Xueping Wuf, Qingfeng Liua,g,**, Zhi-Gang Chenb,c,*()
Received:
2021-07-01
Revised:
2021-07-19
Accepted:
2021-08-10
Published:
2022-04-20
Online:
2021-10-06
Contact:
Qingfeng Liu,Zhi-Gang Chen
About author:
zhigang.chen@usq.edu.au (Z.-G. Chen).De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te[J]. J. Mater. Sci. Technol., 2022, 106: 249-256.
Fig. 1. Illustration of material fabrication process. (a) Schematic diagram of Se-alloying induced point defects strengthening phonon scattering of Ge0.95Bi0.05Te. (b) (1) Calculated ΓM and ΓS of Ge0.95Bi0.05Te1-xSex, and (2) calculated κl of Ge0.95Bi0.05Te1-xSex at 723 K based on Debye-Callaway model [49].
Fig. 2. (a) XRD patterns of the Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets. (b) Lattice parameter a of the Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets, inset is the enlarged (202) characteristic peak in a). (c) TEM image of the Ge0.95Bi0.05Te0.7Se0.3 lamella prepared by microtome. (d) Enlarged TEM image of the blue-square-circled area in (c). (e) HRTEM image of the white-square-circled area in (d), insets (1) and (2) are the enlarged yellow-square-circled area and the inverse FFT corresponding to the red-square-circled area, respectively. (f) Strain maps of Ge0.95Bi0.05Te0.7Se0.3 pellet of the area same as (e).
Fig. 3. (a) BSE-SEM image of the Ge0.95Bi0.05Te0.7Se0.3 pellet. (b) Corresponding EDS maps in a). (c) EDS analysis of the cross spot in (a). (d) EDS measured Se/Te ratio of all Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets.
Fig. 4. (a) Temperature-dependent σ of Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets. (b) x-dependent n. (c) Temperature-dependent S. (d) x-dependent m*. (e) Schematic diagram of band structure change of Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets with increasing x. (f) Temperature-dependent S2σ for Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets.
Fig. 5. (a) Temperature-dependent κ of Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets, inset shows temperature-dependent κe. (b) Temperature-dependent κl of Ge0.95Bi0.05Te1-xSex (x = 0-0.3) pellets. (c) Schematic diagram of (1) general dopant with an unsuitable bond strength and atomic mass induces point defect (PD) phonon scattering, (2) the dopant with an appropriate bond strength and atomic mass both induces PD phonon scattering and strengthens Umklapp (U) scattering via introducing a localized resonant state into the base frequency [57]. (d) Calculated spectral lattice thermal conductivity (κs) of Ge0.95Bi0.05Te0.7Se0.3 using Debye-Callaway model at 300 K [49]. (e) Temperature-dependent ZT of Ge0.95Bi0.05Te1-xSex (x = 0-0.3) and GeTe pellets [31].
[1] |
L.E. Bell, Science 321 (2008) 1457-1461.
DOI PMID |
[2] |
L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351 (2016) 141-144.
DOI URL |
[3] |
B.H. Ge. Z. W. Chen, W. Li, S.Q. Lin, J.W. Shen, Y.J. Chang, R. Hanus, G.J. Snyder, Y.Z. Pei, Nat. Commun. 8 (2017) 13828.
DOI URL |
[4] |
W.-D. Liu, L. Yang, Z.-.G. Chen, Nano Today 35 (2020) 100938.
DOI URL |
[5] |
W.-D. Liu, X.-.L. Shi, R Moshwan, L. Yan, Z.-.G. Chen, J. Zou, Chem. Eng. J. 375 (2019) 121996.
DOI URL |
[6] | D.Y. Bao, J. Chen, Y. Yu, W.D. Liu, L.S. Huang, G. Han, J. Tang, D.L. Zhou, L. Yang, Z.G. Chen, Chem. Eng. J. 388 (2020) 8. |
[7] | H. Zhu, C. Xiao, Y. Xie, Adv. Mater. 30 (2018) 1802000. |
[8] |
M. Dargusch, W.-.D. Liu, Z.-.G. Chen, Adv. Sci. 7 (2020) 2001362.
DOI URL |
[9] |
S. Perunnal, S. Roychowdhury, D.S. Negi, R. Datta, K. Biswas, Chem. Mater. 27 (2015) 7171-7178.
DOI URL |
[10] |
M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.G. Chen, J. Am. Chem. Soc. 141 (2019) 1742-1748.
DOI PMID |
[11] |
J.Z. Xin, Y.L. Tang, Y.T. Liu, X.B. Zhao, H.G. Pan, T.J. Zhu, npj Quantum Mater. 3 (2018) 9.
DOI URL |
[12] | R. Moshwan, X.-.L Shi, W.-.D Liu, Y Wang, S Xu, J Zou, Z.-.G Chen, ACS Appl. Energy Mater. 2 (2019) 2965-2971. |
[13] |
J. Li, X.Y. Zhang, X. Wang, Z.L. Bu, L.T. Zheng, B.Q. Zhou, F. Long, Y. Chen, Y.Z. Pei, J. Am. Chem. Soc. 140 (2018) 16190-16197.
DOI URL |
[14] |
W.-D. Liu, Y. Yu, M. Dargusch, Q. Liu, Z.-.G. Chen, Renew. Sust. Energ. Rev. 141 (2021) 110800.
DOI URL |
[15] |
Y. Wang, W.-.D. Liu, X.-.L. Shi, M. Hong, L.-.J. Wang, M. Li, H. Wang, J. Zou, Z.-.G. Chen, Chem. Eng. J. 391 (2020) 123513.
DOI URL |
[16] | W.-.D. Liu, L. Yang, Z.-.G. Chen, J. Zou, Adv. Mater. 32 (2020) 1905703. |
[17] |
J. Mao, J.L. Niedziela, Y.M. Wang, Y. Xia, B.H. Ge, Z.H. Liu, J.W. Zhou, Z.S. Ren, W. Liu, M.K.Y. Chan, G. Chen, O. Delaire, Q. Zhang, Z.F. Ren, Nano Energy 48 (2018) 189-196.
DOI URL |
[18] | Z.W. Chen, Z.Z. Jian, W. Li, Y.J. Chang, B.H. Ge, R. Hanus, J. Yang, Y. Chen, M.X. Huang, G.J. Snyder, Y.Z. Pei, Adv. Mater. 29 (2017) 1606768. |
[19] |
J. Mao, Y.M. Wang, Z.H. Liu, B.H. Ge, Z.F. Ren, Nano Energy 32 (2017) 174-179.
DOI URL |
[20] |
N. Madar, T. Givon, D. Mogilyansky, Y. Gelbstein, J. Appl. Phys. 120 (2016) 035102.
DOI URL |
[21] |
Y. Sadia, T. Ohaion-Raz, O. Ben-Yehuda, M. Korngold, Y. Gelbstein, J. Solid State Chem. 241 (2016) 79-85.
DOI URL |
[22] | G.S. Yang, R. Niu, L. Sang, X.Z. Liao, D.R.G. Mitchell, N. Ye, J. Pei, J.F. Li, X.L. Wang, Adv. Energy Mater. 10 (2020) 20 0 0757. |
[23] |
G.S. Yang, L.N. Sang, F.F. Yun, D.R.G. Mitchell, G. Casillas, N. Ye, K. See, J. Pei, X.G. Wang, J.-.F. Li, G.J. Snyder, X.L. Wang, Adv. Funct. Mater. 31 (2021) 2008851.
DOI URL |
[24] |
C. Ma, X. Bai, Q. Ren, H.Q. Liu, Y.J. Gu, H.Z. Cui, J. Mater. Sci. Technol. 58 (2020) 10-15.
DOI URL |
[25] |
Y. Kim, Y. Jin, G. Yoon, I. Chung, H. Yoon, C.-.Y. Yoo, S.H. Park, J. Mater. Sci. Technol. 35 (2019) 711-718.
DOI URL |
[26] | Y.Y. Wei, P. Lu, C.X. Zhu, K.P. Zhao, X. Shi, L.D. Chen, F.F. Xu, J. Mater. Sci. Tech- nol. 79 (2021) 222-229. |
[27] | W.D. Liu, D.Z. Wang, Q. Liu, W. Zhou, Z. Shao, Z.-.G. Chen, Adv. Energy Mater. 10 (2020) 20 0 0367. |
[28] |
M.N. Schneider, X. Biquard, C. Stiewe, T. Schroeder, P. Urban, O. Oeckler, Chem. Commun. 48 (2012) 2192-2194.
DOI URL |
[29] |
P.B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Mueller, R.P. Hermann, Phys. Status Solidi B 250 (2013) 1300-1307.
DOI URL |
[30] |
D.L. Guo, C.H. Li, K.B. Qiu, Q.Q. Yang, K.J. Li, B. Shao, D.M. Chen, Y.L. Ma, J.C. Sun, X.L. Cao, W. Zeng, Z.C. Wang, R.E. Xie, J. Alloys Compd. 810 (2019) 151838.
DOI URL |
[31] |
P.C. Wei, C.X. Cai, C.R. Hsing, C.M. Wei, S.H. Yu, H.J. Wu, C.L. Chen, D.H. Wei, D.L. Nguyen, M.M.C. Chou, Y.Y. Chen, Sci. Rep. 9 (2019) 8616.
DOI URL |
[32] |
J.F. Dong, F.H. Sun, H.C. Tang, J. Pei, H.L. Zhuang, H.H. Hu, B.P. Zhang, Y. Pan, J.F. Li, Energy Environ. Sci. 12 (2019) 1396-1403.
DOI URL |
[33] |
B. Srinivasan, A. Gelle, F. Gucci, C. Boussard-Pledel, B. Fontaine, R. Gautier, J.F. Halet, M.J. Reece, B. Bureau, Inorg. Chem. Front. 6 (2019) 63-73.
DOI |
[34] |
X.Y. Zhang, J. Li, X. Wang, Z.W. Chen, J.J. Mao, Y. Chen, Y.Z. Pei, J. Am. Chem. Soc. 140 (2018) 15883-15888.
DOI URL |
[35] |
E. Nshimyimana, X.L. Su, H.Y. Xie, W. Liu, R.G. Deng, T.T. Luo, Y.G. Yan, X.F. Tang, Sci. Bull. 63 (2018) 717-725.
DOI URL |
[36] | Z.H. Liu, J.F. Sun, J. Mao, H.T. Zhu, W.Y. Ren, J.C. Zhou, Z.M. Wang, D.J. Singh, J.H. Sui, C.W. Chu, Z.F. Ren, Proc. Natl. Acad. Sci. 115 (2018) 5332-5337. |
[37] |
J. Li, Z.W. Chen, X.Y. Zhang, Y.X. Sun, J. Yang, Y.Z. Pei, NPG Asia Mater. 9 (2017) e353.
DOI URL |
[38] |
Z.H. Liu, W.H. Gao, W.H. Zhang, N. Sato, Q.S. Guo, T. Mori, Adv. Energy Mater. 10 (2020) 2002588.
DOI URL |
[39] | J. Mao, Z.H. Liu, J.W. Zhou, H.T. Zhu, Q. Zhang, G. Chen, Z.F. Ren, Adv. Phys. 67 (2018) 69-147. |
[40] |
A. Suwardi, S.H. Lim, Y. Zheng, X.Z. Wang, S.W. Chien, X.Y. Tan, Q. Zhu, L.M.N. Wong, J. Cao, W.D. Wang, Q.Y. Yan, C.K.I. Tan, J.W. Xu, J. Mater. Chem. C 8 (2020) 16940-16948.
DOI URL |
[41] |
P. Acharyya, S. Roychowdhury, M. Samanta, K. Biswas, J. Am. Chem. Soc. 142 (2020) 20502-20508.
DOI URL |
[42] |
T. Mori, Small 13 (2017) 1702013.
DOI URL |
[43] |
S.V. Faleev, F. Leonard, Phys. Rev. B 77 (2008) 214304.
DOI URL |
[44] |
M. Hong, Y. Wang, W.D. Liu, S. Matsumura, H. Wang, J. Zou, Z.-.G. Chen, Adv. Energy Mater. 8 (2018) 1801837.
DOI URL |
[45] |
S. Shimano, Y. Tokura, Y. Taguchi, APL Mater. 5 (2017) 056103.
DOI URL |
[46] |
L. Yang, J.Q. Li, R. Chen, Y. Li, F.S. Liu, W.Q. Ao, J. Electron. Mater. 45 (2016) 5533-5539.
DOI URL |
[47] |
J. Li, X.Y. Zhang, S.Q. Lin, Z.W. Chen, Y.Z. Pei, Chem. Mater. 29 (2017) 605-611.
DOI URL |
[48] |
D. Wu, D. Feng, X. Xu, M.K. He, J.T. Xu, J.Q. He, J. Alloys Compd. 805 (2019) 831-839.
DOI URL |
[49] |
R. Moshwan, W.-.D. Liu, X.-.L. Shi, Y.-.P. Wang, J. Zou, Z.-.G. Chen, Nano Energy 65 (2019) 104056.
DOI URL |
[50] |
J. Li, W. Li, Z.L. Bu, X. Wang, B. Gao, F. Xiong, Y. Chen, Y.Z. Pei, ACS Appl. Mater. Interfaces 10 (2018) 39904-39911.
DOI URL |
[51] |
K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.-.P. Fleurial, B.B. Iversen, G.J. Snyder, Rev. Sci. Instrum. 83 (2012) 123902.
DOI URL |
[52] |
J. Li, X.Y. Zhang, X. Wang, Z.L. Bu, L.T. Zheng, B.Q. Zhou, F. Xiong, Y. Chen, Y.Z. Pei, J. Am. Chem. Soc. 140 (2018) 16190-16197.
DOI URL |
[53] |
J. Bicerano, S.R. Ovshinsky, J. Non-Cryst. Solids 74 (1985) 75-84.
DOI URL |
[54] |
L. Yue, W.L. Cui, S.Q. Zheng, Y. Wu, X.M. Dong, G.W. Lu, J. Mater. Res. Technol. 9 (2020) 4106-4113.
DOI URL |
[55] |
S. Perumal, S. Roychowdhury, K. Biswas, Inorg. Chem. Front. 3 (2016) 125-132.
DOI URL |
[56] |
H.Y. Xie, X.L. Su, S.Q. Hao, C. Zhang, Z.K. Zhang, W. Liu, Y.G. Yan, C. Wolverton, X.F. Tang, M.G. Kanatzidis, J. Am. Chem. Soc. 141 (2019) 18900-18909.
DOI URL |
[57] |
X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120 (2020) 7399-7515.
DOI URL |
[58] |
J. Koenig, M. Winkler, T. Dankwort, A.L. Hansen, H.F. Pernau, V. Duppel, M. Jae-gle, K. Bartholome, L. Kienle, W. Bensch, Dalton Trans. 44 (2015) 2835-2843.
DOI PMID |
[1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[2] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
[3] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
[4] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[5] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[6] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[7] | Seong-Tae Kim, Jong Min Park, Kwi-Il Park, Sang-Eun Chun, Ho Seong Lee, Pyuck-Pa Choi, Seonghoon Yi. Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix [J]. J. Mater. Sci. Technol., 2021, 94(0): 175-182. |
[8] | Jinseo Kim, Le Thai Duy, Hyunwoo Kang, Byungmin Ahn, Hyungtak Seo. Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride [J]. J. Mater. Sci. Technol., 2021, 90(0): 225-235. |
[9] | Sining Wang, Lizhong Su, Yuting Qiu, Yu Xiao, Li-Dong Zhao. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70(0): 67-72. |
[10] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[11] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
[12] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[13] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[14] | Zhiyu Chen, Juan Li, Jing Tang, Fujie Zhang, Yan Zhong, Hangtian Liu, Ran Ang. Boosting thermoelectrics by alloying Cu2Se in SnTe-CdTe compounds [J]. J. Mater. Sci. Technol., 2021, 89(0): 45-51. |
[15] | Huiping Hu, Kaiyang Xia, Yuechu Wang, Chenguang Fu, Tiejun Zhu, Xinbing Zhao. Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials [J]. J. Mater. Sci. Technol., 2021, 91(0): 241-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||