J. Mater. Sci. Technol. ›› 2023, Vol. 132: 90-99.DOI: 10.1016/j.jmst.2022.05.045
• Research Article • Previous Articles Next Articles
Wanjia Lia,b, Wangchang Lia,b,*(
), Yao Yinga,b, Jing Yua,b, Jingwu Zhenga,b, Liang Qiaoa,b, Juan Lia,b, Shenglei Chea,b,*(
)
Received:2022-04-10
Revised:2022-05-14
Accepted:2022-05-27
Published:2023-01-01
Online:2022-06-25
Contact:
Wangchang Li,Shenglei Che
About author:cheshenglei@zjut.edu.cn (S. Che).Wanjia Li, Wangchang Li, Yao Ying, Jing Yu, Jingwu Zheng, Liang Qiao, Juan Li, Shenglei Che. Multifunctional flower-like core-shell Fe/Fe4N@SiO2 composites for broadband and high-efficiency ultrathin electromagnetic wave absorber[J]. J. Mater. Sci. Technol., 2023, 132: 90-99.
Fig. 2. (a) Research on nitriding mechanism and evolution of crystal structure of as-obtained hybrid composite. (b) XRD patterns of all samples. (c) Nitrogen content of all samples.
Fig. 5. TEM images of (a) FL-0, (b) FL-3, (c) ultrathin sectioned samples of FL-3, (d) HRTEM image at the interface of (c) and (e, f) lattice fringes of (d).
Fig. 6. (a) N2 adsorption-desorption isotherms. (b) Specific surface area of the coated powder, FL-0 and FL-3. (c) Thermal analysis of FL-3. (d) Potentiodynamic polarization curve of carbonyl iron powder; and XPS spectra for the samples of FL-3: (e) Full spectrum, (f) Fe 2p, (g) C 1s, (h) N 1s, (i) O 1s.
| Size | Carbonyl iron powder | FL-1 | FL-3 |
|---|---|---|---|
| Ecorr (V) | −0.29 | 0.09 | 0.3 |
| icorr (A/cm2) | 2.51 × 10-4 | 6.31 × 10-7 | 5.01 × 10-8 |
Table 1. Corrosion kinetic parameters of different samples in acidic solution of 5%NaCl.
| Size | Carbonyl iron powder | FL-1 | FL-3 |
|---|---|---|---|
| Ecorr (V) | −0.29 | 0.09 | 0.3 |
| icorr (A/cm2) | 2.51 × 10-4 | 6.31 × 10-7 | 5.01 × 10-8 |
Fig. 7. (a) Real part and (b) imaginary part of complex permittivity of all samples, (d) real part and (e) imaginary part of the complex permeability of all samples, (c) the dielectric loss tangent and (f) the magnetic loss tangent of all samples, (g) C0 of all samples, (h) attenuation constant of all samples.
Fig. 8. EMW absorption performance of FL-0 (a), FL-1 (b), FL-2 (c), FL-3 (d), FL-4 (e) and reflectance loss and impedance matching for all samples at optimum electromagnetic wave absorption performance (f).
| Sample | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Refs. |
|---|---|---|---|---|---|
| Ni/NiO@C | −51.1 | 2.4 | 5.12 | 2.7 | [ |
| Nano-sized Fe4N | −33 | 3 | - | - | [ |
| Fe4N/MWCNTs | −10.91 | 2 | - | - | [ |
| Co/Co3O4@HCNs | −50.6 | 2.2 | 6.6 | 2.1 | [ |
| CF@MXene@ZnO | −67.35 | 3.5 | 5.44 | 4.0 | [ |
| Co@N-doped carbon shell | −60.6 | 2.4 | 5.1 | 1.9 | [ |
| Yolk-shell Ni@SnO2 | −50.2 | 1.5 | 4.8 | 1.7 | [ |
| Ti3C2Tx MXene@Ni Cu@Ni-O | −59.6 −43.5 | 1.5 - | 4.48 7.3 | - 2.8 | [ [ |
| Carbon-based iron nitride | −44.48 | 3.02 | 4 | 1 | [ |
| Fe@Fe4N submicron fiber | −39.8 | 5 | 5 | 2.5 | [ |
| γ′-Fe4N@iron oxides | −38.5 | 1.24 | - | - | [ |
| Nanodendritic γ′-Fe4N | −12 | 3 | - | - | [ |
| Fe16N2 | −18.3 | 2.2 | - | - | [ |
| FL-3 | −71.31 | 1.4 | 6.1 | 1.16 | This work |
Table 2. Electromagnetic wave absorption performance of typical composites.
| Sample | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Refs. |
|---|---|---|---|---|---|
| Ni/NiO@C | −51.1 | 2.4 | 5.12 | 2.7 | [ |
| Nano-sized Fe4N | −33 | 3 | - | - | [ |
| Fe4N/MWCNTs | −10.91 | 2 | - | - | [ |
| Co/Co3O4@HCNs | −50.6 | 2.2 | 6.6 | 2.1 | [ |
| CF@MXene@ZnO | −67.35 | 3.5 | 5.44 | 4.0 | [ |
| Co@N-doped carbon shell | −60.6 | 2.4 | 5.1 | 1.9 | [ |
| Yolk-shell Ni@SnO2 | −50.2 | 1.5 | 4.8 | 1.7 | [ |
| Ti3C2Tx MXene@Ni Cu@Ni-O | −59.6 −43.5 | 1.5 - | 4.48 7.3 | - 2.8 | [ [ |
| Carbon-based iron nitride | −44.48 | 3.02 | 4 | 1 | [ |
| Fe@Fe4N submicron fiber | −39.8 | 5 | 5 | 2.5 | [ |
| γ′-Fe4N@iron oxides | −38.5 | 1.24 | - | - | [ |
| Nanodendritic γ′-Fe4N | −12 | 3 | - | - | [ |
| Fe16N2 | −18.3 | 2.2 | - | - | [ |
| FL-3 | −71.31 | 1.4 | 6.1 | 1.16 | This work |
| [1] |
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, Adv. Funct. Mater. 30 (2020) 1907251.
DOI URL |
| [2] |
Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao, Y.Q. Liu, ACS Appl. Mater. Interfaces 10 (2018) 19143-19152.
DOI URL |
| [3] |
H.X. Zhang, Z.R. Jia, A.L. Feng, Z.H. Zhou, C.H. Zhang, K.K. Wang, N. Liu, G.L. Wu, Compos. Commun. 19 (2020) 42-50.
DOI URL |
| [4] |
X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, W. Wu, X.H. Liu, B.H. Xu, G.L. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
| [5] |
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R. C. Che, Adv. Mater. 34 (2021) 2107538.
DOI URL |
| [6] |
M.G. Han, W. Tang, W.B. Chen, H. Zhou, L.J. Deng, J. Appl. Phys. 107 (2010) 09A958.
DOI URL |
| [7] |
X.F. Zhang, Y.X. Li, R.G. Liu, Y. Rao, H.W. Rong, G.W. Qin, ACS Appl. Mater. In- terfaces 8 (2016) 3494-3498.
DOI URL |
| [8] |
Y.B. Feng, T. Qiu, J. Alloy. Compd. 513 (2012) 455-459.
DOI URL |
| [9] |
A. Aharoni, J. Appl. Phys. 69 (1991) 7762-7764.
DOI URL |
| [10] |
A. Aharoni, J. Appl. Phys. 81 (1997) 830 830.
DOI URL |
| [11] |
P.B. Liu, S. Gao, Y. Wang, F.T. Zhou, Y. Huang, W.H. Huang, N.H. Chang, Carbon 170 (2020) 503-516 N Y.
DOI URL |
| [12] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
| [13] | J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Small 8 (2012) 1214-1221. |
| [14] |
J. Xiong, Z. Xiang, J. Zhao, L.Z. Yu, E.B. Cui, B.W. Deng, Z.C. Liu, R. liu, W. Lu, Carbon 154 (2019) 391-401 N Y.
DOI URL |
| [15] | K. Guo, D. Rau, J.V. Appen, Y. Prots, W. Schnelle, R. Dronskowski, R. Niewa, U. Schwarz, High Press. Res. 33 (2013) 684-696. |
| [16] | Y.F. Jiang, L.X. Jiang, IEEE Trans. Magn. 55 (2019) 1-4. |
| [17] |
Y.J. Shi, Y.L. Du, G. Chen, Solid State Commun. 152 (2012) 1581-1584.
DOI URL |
| [18] |
L. Rissanen, M. Neubauer, K.P. Lieb, P. Schaaf, J. Alloy. Compd. 274 (1998) 74-82.
DOI URL |
| [19] |
S. Kokado, N. Fujima, K. Harigaya, H. Shimizu, A. Sakuma, Phys. Rev. B 73 (2006) 172410.
DOI URL |
| [20] |
M.J. Yu, Y. Xu, Q. Mao, F.Z. Li, C.G. Wang, J. Alloy. Compd. 656 (2016) 362-367.
DOI URL |
| [21] |
L.N. Dai, S.K. Xie, M.J. Yu, L.J. Ci, J. Magn. Magn. Mater. 466 (2018) 22-27.
DOI URL |
| [22] |
Q. Zheng, M.J. Yu, X.P. Gao, Y.J. Wang, Z. Zhang, H.P. Zhou, Y. Dai, J. Mater. Sci. 55 (36) (2020) 16954-16968.
DOI URL |
| [23] |
J.C. Shu, X.Y. Huang, M.S. Cao, Carbon 174 (2021) 638-646 N Y.
DOI URL |
| [24] |
Z.M. Song, X.F. Liu, X. Sun, Y. Li, X.Y. Nie, W.K. Tang, R.H. Yu, J.L. Shui, Carbon 151 (2019) 36-45 N Y.
DOI URL |
| [25] |
M.L. Ma, W.T. Li, Z.Y. Tong, Y.Y. Yang, Y. Ma, Z.G. Cui, R.Z. Wang, P. Lyu, W.B. Huang, Mater. Des. 188 (2020) 108462.
DOI URL |
| [26] | Q. Chang, H.S. Liang, B. Shi, H.J. Wu, iScience 25 (2022) 103925. |
| [27] |
M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Funct. Mater. 31 (2021) 2103436.
DOI URL |
| [28] | Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, R.C. Che, Adv. Funct. Mater. 29 (28)(2019) 1901448. 1-1901448.10. |
| [29] |
S. Li, L. Ma, Z. Lei, A. Hua, A. Zhang, Y. Song, F. Liu, D. Geng, W. Liu, S. Ma, Carbon 186 (2022) 520-529 N Y.
DOI URL |
| [30] |
W. Tian, X.Z. Zhang, Y. Guo, C.H. Mu, P.H. Zhou, L.J. Yin, L.B. Zhang, L. Zhang, H.P. Lu, X. Jian, L.J. Deng, Carbon 173 (2021) 185-193 N Y.
DOI URL |
| [31] |
W.C. Li, H.W. Cai, Y. Kang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, S.L. Che, Acta Mater. 167 (2019) 267-274.
DOI URL |
| [32] |
J.Q. Li, M. Isobe, E. Takayama-Muromachi, Y. Matsui, J. Appl. Phys. 81 (1997) 1628.
DOI URL |
| [33] | J.D. Ji, Y. Huang, J.H. Yin, X.C. Zhao, X.W. Cheng, S.L. He, X. Li, J. He, J.P. Liu, ACS Appl. Mater. Interfaces 1 (2018) 3935-3944. |
| [34] |
Y.L. Ren, H.Y. Wu, M.M. Lu, Y.J. Chen, C.L. Zhu, P. Gao, M.S. Cao, C.Y. Li, Q.Y. Ouyang, ACS Appl. Mater. Interfaces 4 (2012) 6436-6442.
DOI URL |
| [35] | Z.H. Dai, Y. Akishige, Ceram. Int. 38 (2012) S403-S406. |
| [36] | S. Klau, L. Trotochaud, M.J. Cheng, M. Head-Gordon, A.T. Bell, ChemElec- troChem 3 (2015) 66-73. |
| [37] |
L. Wang, Y. Huang, C. Li, J.J. Chen, X. Sun, Compos. Sci. Technol. 108 (2015) 1-8.
DOI URL |
| [38] |
Y.F. Jiang, X.W. Zhang, A. A. Mehedi, M.Y. Yang, J.P. Wang, Mater. Res. Express 2 (2015) 116103.
DOI URL |
| [39] |
W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L. J. Wan, J. Am. Chem. Soc. 138 (2016) 3570-3578.
DOI URL |
| [40] |
J. Wei, Y.X. Hu, Y. Liang, B. Kong, J. Zhang, J.C. Song, Q.L. Bao, G.P. Simon, S.P. Jiang, H.T. Wang, Adv. Funct. Mater. 25 (2015) 5768-5777.
DOI URL |
| [41] | F. Zhang, W. Cui, B.B. Wang, B.H. Xu, X.H. Liu, X.H. Liu, Z.R. Jia, G.L. Wu, Com- pos. Part B-Eng. 204 (2020) 108491. |
| [42] |
J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei, R.Y. Tan, Z. Li, Carbon 172 (2021) 542-555 N Y.
DOI URL |
| [43] |
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
| [44] |
S.H. Chen, R.Z. Xu, J.M. Liu, X.L. Zou, L. Qiu, F.Y. Kang, B.L. Liu, H.M. Cheng, Adv. Mater. 31 (2019) 1804810.
DOI URL |
| [45] | M. Green, Z. Liu, R. Smedley, H. Nawaz, X. Li, F. Huang, X. Chen, Mater. Today Phys. 5 (2018) 78-86. |
| [46] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano Micro Lett. 13 (2021) 175. |
| [47] |
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang, W. Lu, Nano Micro Lett. 13 (2021) 17.
DOI URL |
| [48] |
H.X. Zhang, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 421 (2021) 129960.
DOI URL |
| [49] |
Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, ACS Appl. Mater. Interfaces 8 (2016) 34686-34698.
DOI URL |
| [50] | X.J. Zeng, G.M. Jiang, L.Y. Zhu, C.Y. Wang, M. Chen, R.H. Yu, A.C.S. Appl, Nano Mater. 2 (2019) 5475-5482. |
| [51] | X. Zhang, X.C. Zhang, D.T. Wang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen, J. Mater. Chem. C 7 (2019) 11868-11878. |
| [52] |
J.M. Xu, L. Xia, J.H. Luo, S.R. Lu, X.X. Huang, B. Zhong, T. Zhang, G.W. Wen, X. Wu, L. Xiong, G. Wang, ACS Appl. Mater. Interfaces 12 (2020) 20775-20784.
DOI URL |
| [53] |
M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Sci. 8 (2021) 2004640.
DOI URL |
| [54] |
X.F. Zhou, Z.R. Jia, A.L. Feng, K.K. Wang, X.H. Liu, L. Chen, H.J. Cao, G.L. Wu, Compos. Commun. 21 (2020) 100404.
DOI URL |
| [55] |
D. Lan, Z.G. Gao, Z.H. Zhao, K.C. Kou, H.J. Wu, Compos. Commun. 26 (2021) 100767.
DOI URL |
| [56] |
H.P. Lv, C. Wu, F.X. Qin, H.X. Peng, M. Yan, J. Mater. Sci. Technol. 90 (2021) 1-8.
DOI URL |
| [57] |
C. Jin, Z.C. Wu, C.D. Yan, L.Y. Wang, R.X. Zhang, H.L. Xu, R.C. Che, Chem. Eng. J. 433 (2022) 133640.
DOI URL |
| [58] |
J.L. Liu, L.M. Zhang, H.J. Wu, Adv. Funct. Mater. 32 (2022) 2200544.
DOI URL |
| [59] |
M. Qin, L.M. Zhang, H.J. Wu, Adv. Sci. 9 (2022) 2105553.
DOI URL |
| [60] |
Y. Hu, R.J. Jiang, J.B. Zhang, C.S. Zhang, G.D. Cui, J. Mater. Sci. Technol. 34 (2017) 886-890.
DOI URL |
| [61] |
H.X. Xu, G.Z. Zhang, Y. Wang, M.Q. Ning, B.O. Yang, Y. Zhao, Y. Huang, P.B. Liu, Nano Micro Lett. 14 (2022) 102.
DOI URL |
| [62] |
X.P. Han, Y. Huang, S. Gao, G.Z. Zhang, T.H. Li, P.B. Liu, Carbon 183 (2021) 872-883 N Y.
DOI URL |
| [63] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
| [64] | B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, G. Shao, B.B. Fan, Z.Y. Bai, R. Zhang, A. C.S. Appl, Nano Mater. 8 (2016) 28917-28925. |
| [65] | C.Y. Wen, X. Li, R.X. Zhang, C.Y. Xu, W.B. You, Z.W. Liu, B. Zhao, R.C. Che, ACS Nano 16 (2022) 1150-1159. |
| [66] | B. Zhao, Y. Li, Q.W. Zeng, L. Wang, J.J. Ding, R. Zhang, R.C. Che, Small 16 (2020) 2003502. |
| [67] |
Q. Zheng, M.J. Yu, W. Wang, S.Y. Liu, X.C. Liang, C.G. Wang, Y.Y. Dai, Y. Xu, Ceram. Int. 47 (2021) 8315-8321.
DOI URL |
| [68] |
M.G. Zhu, M.J. Yu, Q. Mao, F.Z. Li, C.G. Wang, Funct. Mater. Lett. 09 (2016) 1650021.
DOI URL |
| [69] | L. Xi, X.N. Shi, Z. Wang, Y.L. Zuo, J.H. Du, Phys. B 406 (2011) 2168-2171. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
