J. Mater. Sci. Technol. ›› 2023, Vol. 132: 100-109.DOI: 10.1016/j.jmst.2022.04.056
• Research Article • Previous Articles Next Articles
Huan Liua,b,1, Hai Wanga,b,1, Ling Rena,b,d,e,**(
), Dong Qiuc,*(
), Ke Yanga,b
Received:2022-03-16
Revised:2022-04-24
Accepted:2022-04-26
Published:2023-01-01
Online:2022-06-17
Contact:
Ling Ren,Dong Qiu
About author:** Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. E-mail addresses: lren@imr.ac.cn (L. Ren).1 These authors contributed equally to this work.
Huan Liu, Hai Wang, Ling Ren, Dong Qiu, Ke Yang. Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance[J]. J. Mater. Sci. Technol., 2023, 132: 100-109.
| Samples | Scanning velocity, v (mm s−1) | Laser power, P (W) | Layer thickness, t (μm) | Hatch spacing, h (μm) | Energy density, | Inter-layer time (s) |
|---|---|---|---|---|---|---|
| Ti-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
| Ti-5Cu-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-5Cu-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
| Ti-6Al-4V-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-6Al-4V-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
Table 1. LPBF printing parameters in this paper.
| Samples | Scanning velocity, v (mm s−1) | Laser power, P (W) | Layer thickness, t (μm) | Hatch spacing, h (μm) | Energy density, | Inter-layer time (s) |
|---|---|---|---|---|---|---|
| Ti-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
| Ti-5Cu-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-5Cu-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
| Ti-6Al-4V-1 | 1000 | 360 | 40 | 100 | 90 | 10 |
| Ti-6Al-4V-2 | 1500 | 360 | 40 | 100 | 60 | 10 |
Fig. 1. EBSD analysis of martensite in as-fabricated LPBF-Ti, Ti-5Cu and Ti-6Al-4V alloys. (A) Inverse pole figures (IPF) images showing blocks interior in martensitic microstructure. (B) Pole figures of LPBF-Ti, Ti-5Cu and Ti-6Al-4V samples. The red circles indicate pairs of parallel planes or directions in α′ and β phases. Note the difference in scale bars between A1/A2 and A3-A6.
Fig. 3. Identification of different levels of boundaries. (A) In LPBF Ti-1 sample; (B) In LPBF Ti-5Cu-1 sample. Blue lines are the grain boundaries following the Burgers OR, while black lines are the grain boundaries, and red lines are the LAGBs. Note that the magnification is different in (A) and (B).
| Samples | β grain size (μm) | Packet size (μm) | Block width (μm) | Lath width (nm) | ρ (× 1013 m−2) | σ0.2 (MPa) | UTS (MPa) | Elongation, δ (%) |
|---|---|---|---|---|---|---|---|---|
| Ti -1 | 258.06 ± 58.0 | 70.49 ±.490 | 5.675 ± 5490 | 1172 ± 249 | 5.9206ion | 588.5 ± 54.5 | 642.6 ± 6527 | 19.5 ± 9.2 |
| Ti -2 | 213.37 ± 13.3 | 59.38 ±.383 | 4.887 ± 7383 | 1151 ± 138 | 8.0137ion | 615.7 ±.6.4 | 687.6 ± 6413 | 19.137io |
| Ti-5Cu -1 | 52.52 ± 2.52 | 13.71 ± 7152 | 1.181 ± 1152 | 186 ± 8152 | 8.49 ±.152 | 837.6 ±.7.4 | 945.5 ±.552 | 15.9 ± 5.9 |
| Ti-5Cu -2 | 43.16 ± 3.16 | 10.46 ± 4616 | 0.971 ± 7616 | 1979616u | 9.91 ± 1697 | 850.4 ±.8.6 | 1010.8 ± 010. | 13.3 ± 3.3 |
| Ti-6Al-4V -1 | 165.24 ± 65.2 | 43.12 ± 3.12 | 1.801 ± 0112 | 455 ± 5112 | 24.2 ±.212 | 969.7 ± 98.5 | 1019.0-4V - | 7.29.0-4 |
| Ti-6Al-4V -2 | 148.35 ± 48.3 | 39.675-4V | 1.875 ± 5.67 | 639 ± 9.67 | 33.0 ±.067 | 955.3 ± 50.7 | 1038.2-4V - | 6.94.2-4 |
Table 2. Statistics of substructure size, dislocation density and selected mechanical properties of martensite in LPBF titanium alloy.
| Samples | β grain size (μm) | Packet size (μm) | Block width (μm) | Lath width (nm) | ρ (× 1013 m−2) | σ0.2 (MPa) | UTS (MPa) | Elongation, δ (%) |
|---|---|---|---|---|---|---|---|---|
| Ti -1 | 258.06 ± 58.0 | 70.49 ±.490 | 5.675 ± 5490 | 1172 ± 249 | 5.9206ion | 588.5 ± 54.5 | 642.6 ± 6527 | 19.5 ± 9.2 |
| Ti -2 | 213.37 ± 13.3 | 59.38 ±.383 | 4.887 ± 7383 | 1151 ± 138 | 8.0137ion | 615.7 ±.6.4 | 687.6 ± 6413 | 19.137io |
| Ti-5Cu -1 | 52.52 ± 2.52 | 13.71 ± 7152 | 1.181 ± 1152 | 186 ± 8152 | 8.49 ±.152 | 837.6 ±.7.4 | 945.5 ±.552 | 15.9 ± 5.9 |
| Ti-5Cu -2 | 43.16 ± 3.16 | 10.46 ± 4616 | 0.971 ± 7616 | 1979616u | 9.91 ± 1697 | 850.4 ±.8.6 | 1010.8 ± 010. | 13.3 ± 3.3 |
| Ti-6Al-4V -1 | 165.24 ± 65.2 | 43.12 ± 3.12 | 1.801 ± 0112 | 455 ± 5112 | 24.2 ±.212 | 969.7 ± 98.5 | 1019.0-4V - | 7.29.0-4 |
| Ti-6Al-4V -2 | 148.35 ± 48.3 | 39.675-4V | 1.875 ± 5.67 | 639 ± 9.67 | 33.0 ±.067 | 955.3 ± 50.7 | 1038.2-4V - | 6.94.2-4 |
Fig. 5. TEM images of as-fabricated LPBF-Ti, Ti-5Cu and Ti-6Al-4V. (A) Bright-field TEM images of Ti-1, Ti-5Cu-1 and Ti-6Al-4V-1 samples. (B) High angle annular dark field (HAADF) image and X-ray energy dispersive spectrum (XEDS) images inside a martensite block of the Ti-5Cu-1 sample. (C) HAADF and XEDS images inside a martensite block of the Ti-6Al-4V-1 sample.
Fig. 6. XRD analysis to measure dislocation density in LPBF-Ti, Ti-5Cu and Ti-6Al-4V samples. (A) XRD profiles of materials. (B) Dependence of FWHM on the peak positions in LPBF-Ti, Ti-5Cu and Ti-6Al-4V samples. (C) Linear fitting of ln[A(L)]/L2 vs. ln(L) in an L range of 0.1-0.4. (D) Linear fitting of $\text{ }\!\!\Delta\!\!\text{ }K$ vs. $K{{\bar{C}}^{1/2}}$ curves.
Fig. 7. Mechanical properties of materials. (A) Stress-strain curves of LPBF-Ti, Ti-5Cu and Ti-6Al-4V samples. (B) Comparison of tensile strength and elongation of Ti, Ti-Cu, Ti-6Al-4V and some titanium alloys manufactured by different methods. The data of LPBF titanium alloy obtained in this paper are marked by red dotted lines.
Fig. 8. Fractographs of LPBF-Ti, Ti-5Cu and Ti-6Al-4V samples, in which the fibrous region and radiation region were artificially colored in nattier blue and yellow, respectively.
| Samples | K1 | K2 | μ | M1 |
|---|---|---|---|---|
| Ti | 311.76 | 232.93 | 40,100 | 1.0160 |
| Ti-5Cu | 181.32 | 168.15 | 40,400 | 0.8878 |
| Ti-6Al-4V | 213.74 | 192.18 | 41,000 | 1.0566 |
Table 3. Calculation results of K1, K2, μ and M1.
| Samples | K1 | K2 | μ | M1 |
|---|---|---|---|---|
| Ti | 311.76 | 232.93 | 40,100 | 1.0160 |
| Ti-5Cu | 181.32 | 168.15 | 40,400 | 0.8878 |
| Ti-6Al-4V | 213.74 | 192.18 | 41,000 | 1.0566 |
| [1] |
H. Liu, R. Liu, I. Ullah, S.Y. Zhang, Z.Q. Sun, L. Ren, K. Yang, J. Mater. Sci. Technol. 48 (2020) 130-139.
DOI URL |
| [2] | Y.C. Qin, Q.F. Qi, P.Z. Shi, P.J. Scott, Virt. Phys. Prototyp. 16 (2021) 29-49. |
| [3] |
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 108 (2016) 308-318.
DOI URL |
| [4] |
L. Thijsa, F. Verhaeghea, T. Craeghsb, J.V. Humbeecka, J.-P. Kruth, Acta Mater. 58 (2010) 3303-3312.
DOI URL |
| [5] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85 (2015) 74-84.
DOI URL |
| [6] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125 (2017) 390-400.
DOI URL |
| [7] | W.G. Burgers, Physica 36 (1934) 561-586. |
| [8] |
T. Karthikeyan, S. Saroja, M. Vijayalakshmi, Scr. Mater. 55 (2006) 771-774.
DOI URL |
| [9] | G. Krauss, Mater. Sci. Eng. A 273-275 (1999) 40-57. |
| [10] | M.J. Roberts, Metal. Trans. 1 (1970) 3287-3294. |
| [11] | T. Furuhara, S. Morito, T. Maki, J. Phys. Archit. 112 (2003) 255-258. |
| [12] |
C. Zhang, Q. Wang, J. Ren, R. Li, Mater. Sci. Eng. A 534 (2012) 339-346.
DOI URL |
| [13] | X.C. Liu, H.W. Zhang, K. Lu, Science 342 (2013) 337-340. |
| [14] | L.G. Sun, G. Wu, Q. Wang, J. Lu, Mater. Today 38 (2020) 114-135. |
| [15] |
J. Yang, Q.Z. Wang, F.X. Yin, C.X. Cui, P.G. Ji, B. Li, Mater. Sci. Eng. A 664 (2016) 215-220.
DOI URL |
| [16] | D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95. |
| [17] |
M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. StJohn, J. Mater. Res. 23 (2008) 97-104.
DOI URL |
| [18] |
H. Wang, W. Song, K. Koenigsmann, S. Zhang, L. Ren, K. Yang, Mater. Des. 188 (2020) 108475.
DOI URL |
| [19] |
S. Huang, R.L. Narayan, J.H.K. Tan, Acta Mater. 204 (2021) 116522.
DOI URL |
| [20] | N. Nadammal, T. Mishurova, T. Fritsch, Addit. Manuf. 38 (2021) 101792. |
| [21] |
J.P. Oliveira, A.D. LaLonde, J. Ma, Mater. Des. 193 (2020) 108762.
DOI URL |
| [22] | S.L. Sing, W.Y. Yeong, Virt. Phys. Prototyp. 15 (2020) 359-370. |
| [23] |
S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51 (2003) 2485-2503.
DOI URL |
| [24] |
K.P. Sanosh, A. Balakrishnan, L. Francis, T.N. Kim, J. Mater. Sci. Technol. 26 (2010) 904-907.
DOI URL |
| [25] |
T. Ungar, A. Brobely, Appl. Phys. Lett. 69 (1996) 3173-3175.
DOI URL |
| [26] |
M.G. Glavicic, A. A. Salem, S.L. Semiatin, Acta Mater. 52 (2004) 647-655.
DOI URL |
| [27] | A. Borbely, J. Dragomir-cernatescu, J.Appl. Cryst. 36 (2003) 160-162. |
| [28] |
A.O.F. Hayama, P.N. Andrade, A. Cremasco, R.J. Contieri, C.R.M. Afonso, R. Caram, Mater. Des. 55 (2014) 1006-1013.
DOI URL |
| [29] | C. Zou, L.N.Y. Wong, Y. Cheng, in:Proceedings to the 46th U.S. Rock Mechan- ics/Geomechanics Symposium, Chicago, Illinois, U.S., 2012, pp. 24-27. June. |
| [30] |
U. Bathini, T.S. Srivatsan, A. Patnaik, T. Quick, J. Mater. Eng. Perform. 19 (2010) 1172-1182.
DOI URL |
| [31] |
E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98 (2015) 81-93.
DOI URL |
| [32] |
C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers, Scr. Mater. 116 (2016) 117-121.
DOI URL |
| [33] |
A. Pineau, A. Amine Benzerga, T. Pardoen, Acta Mater. 107 (2016) 508-544.
DOI URL |
| [34] | Chapter 2 - Griffith Theory of Fracture, C.T. Sun, Z.H. Jin, C.T. Sun, Z.H. Jin, in: Fracture Mechanics, Academic Press, Boston, 2012, pp. 11-24. |
| [35] |
A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.K. St Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R. Madaah Hosseini, S. Ramakrishna, A. A. Zadpoor, J. Alloy. Compd. 804 (2019) 163-191.
DOI URL |
| [36] |
F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers, Acta Mater. 57 (2009) 6006-6012.
DOI URL |
| [37] |
L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Adv. Mater. 29 (2017) 1604211.
DOI URL |
| [38] | K. Chandrappa, R. Kant, R. Ali, K. Vineth,Mater. Today Proc. 27 (2020) 1689-1695. |
| [39] |
X. Gao, G. Zhang, L. Luo, X. Wang, Comput. Mater. Sci. 154 (2018) 8-13.
DOI URL |
| [40] |
H.Z. Tavakoli, M. Abdollahy, S.J. Ahmadi, A.K. Darban, Trans. Nonferr. Met. Soc. China 27 (2017) 2691-2703.
DOI URL |
| [41] |
J. Haubrich, J. Gussone, P. Barriobero-Vila, P. Kürnsteiner, E.A. Jägle, D. Raabe, N. Schell, G. Requena, Acta Mater. 167 (2019) 136-148.
DOI URL |
| [42] |
Z. Wang, Z. Xiao, Y. Tse, C. Huang, W. Zhang, Opt. Laser Technol. 112 (2019) 159-167.
DOI URL |
| [43] | J. Sun, X. Zhu, L. Qiu, F. Wang, Y. Yang, L. Guo, Mater. Today Commun. 19 (2019) 277-285. |
| [44] |
J. Liu, Y. Song, C. Chen, X. Wang, H. Li, C.A. Zhou, J. Wang, K. Guo, J. Sun, Mater. Des. 186 (2020) 108355.
DOI URL |
| [45] |
J. Zhang, Y. Liu, M. Bayat, Q. Tan, Y. Yin, Z. Fan, S. Liu, J.H. Hattel, M. Dargusch, M. X. Zhang, Scr. Mater. 191 (2021) 155-160.
DOI URL |
| [1] | Wei Wang, Yanke Liu, Zihan Zhang, Muxin Yang, Lingling Zhou, Jing Wang, Ping Jiang, Fuping Yuan, Xiaolei Wu. Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation [J]. J. Mater. Sci. Technol., 2023, 132(0): 110-118. |
| [2] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
| [3] | Jing Peng, Jia Li, Bin Liu, Jian Wang, Haotian Chen, Hui Feng, Xin Zeng, Heng Duan, Yuankui Cao, Junyang He, Peter K. Liaw, Qihong Fang. Formation process and mechanical properties in selective laser melted multi-principal-element alloys [J]. J. Mater. Sci. Technol., 2023, 133(0): 12-22. |
| [4] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
| [5] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [6] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [7] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
| [8] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [9] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
| [10] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [11] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
| [12] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
| [13] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
| [14] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
| [15] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
