J. Mater. Sci. Technol. ›› 2023, Vol. 132: 110-118.DOI: 10.1016/j.jmst.2022.05.048
• Research Article • Previous Articles Next Articles
Wei Wanga, Yanke Liua,b, Zihan Zhanga,b, Muxin Yanga, Lingling Zhoua,b, Jing Wanga, Ping Jianga, Fuping Yuana,b,*(), Xiaolei Wua,b
Received:
2022-03-25
Revised:
2022-05-12
Accepted:
2022-05-29
Published:
2023-01-01
Online:
2022-07-01
Contact:
Fuping Yuan
About author:
* State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. E-mail address: fpyuan@lnm.imech.ac.cn (F. Yuan).Wei Wang, Yanke Liu, Zihan Zhang, Muxin Yang, Lingling Zhou, Jing Wang, Ping Jiang, Fuping Yuan, Xiaolei Wu. Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation[J]. J. Mater. Sci. Technol., 2023, 132: 110-118.
Fig. 1. Tensile properties of the investigated MMS after intercritical annealing at various temperatures. (a) Tensile engineering stress-strain curves. The corresponding ultimate strength points are marked by squares. The inset shows the close-up view of the yield point region. (b) Yield strength vs. uniform elongation for the investigated MMS, along with data for other high-performance steels [3,35,[37], [38], [39], [40], [41], [42], [43], [44]].
Fig. 2. Microstructures of the IA650 and IA660 samples prior to tensile testing. (a, b) EBSD phase map with grain boundaries and the GROD map for the IA650 sample. (c, d) EBSD phase map with grain boundaries and the GROD map for the IA660 sample. γ-austenite and α-ferrite are indicated by red region and cyan region, respectively and high-angle boundary (≥ 15°), low-angle boundary (2°?15°), and twin boundary are denoted by black lines, fuchsia lines, and blue lines, respectively.
Fig. 3. Element distributions of the IA650 sample prior to tensile testing. (a, b) Near-atomic level chemical element distributions between γ and α, as revealed by 3D-APT. The phase boundary is marked by a 6 at.% Mn iso-concentration surface. (c, d) STEM image and the corresponding Mn distribution mapping. (e) Mn content distribution of various austenite grains.
Fig. 4. Full-field strain distributions of the IA650 sample measured by DIC. (a) Contour maps of axial strain at various applied strains. Number above each map: εapp. Color scale bar at the right ride for each map. (b) Distributions of εL along normalized axial position at varying applied strains, e.g. white vertical line in the first contour in (a).
Fig. 5. Full-field strain distributions of the IA660 sample measured by DIC. (a) Contour maps of axial strain at various applied strains. (b) Distributions of εL along normalized axial position at varying applied strains.
Fig. 6. (a) True stress-strain curves and volume fractions of austenite phase as a function of applied strain for both the IA650 and IA660 samples after several localized deformation bands pass through the entire gage length. (b) Distributions for volume fraction of austenite along the axial direction in the IA650 sample prior to tensile testing and at an interrupted tensile strain of 8%. The inset shows the schematic diagram of measuring positions. (c) Strain duration for each localized deformation band (εLDB) and normalized change of volume fraction of austenite by each εLDB (VLDB/εLDB) for both the IA650 and IA660 samples.
Fig. 7. (a) GND density evolutions of both the IA650 and IA660 samples after several localized deformation bands pass through the entire gage length. (b) Magnitudes of strain gradient at the front of localized deformation band as a function of applied strain for both the IA650 and IA660 samples.
Fig. 8. TEM observations for the IA650 sample at an interrupted strain of 27%. (a) Martensite transformation process. (b) Dark-field image in (a). (c) Ferrite phase.
[1] |
H. Aydin, E. Essadiqi, I.H. Jung, S. Yue, Mater. Sci. Eng. A 564 (2013) 501-508.
DOI URL |
[2] | O. Bouaziz, H. Zurob, M.X. Huang, Steel Res. Int. 84 (2013) 937-947. |
[3] | S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77-79. |
[4] |
R. Ding, Z.B. Dai, M.X. Huang, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59-69.
DOI URL |
[5] |
Y.K. Lee, J. Han, Mater. Sci. Technol. 31 (2015) 843-856.
DOI URL |
[6] |
H.P. Liu, H.E. Sun, B. Liu, D.Z. Li, F.G. Sun, X.J. Jin, Mater. Des. 83 (2015) 760-767.
DOI URL |
[7] |
J. Jeon, S. Nam, S. Kang, J. Shin, H. Choi, Mater. Des. 92 (2016) 73-78.
DOI URL |
[8] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI URL PMID |
[9] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[10] | T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937. |
[11] |
F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plast. 16 (20 0 0) 723-748.
DOI URL |
[12] |
B.C. De Cooman, O. Kwon, K.G. Chin, Mater. Sci. Technol. 28 (2012) 513-527.
DOI URL |
[13] |
F. Yang, H. Luo, C. Hu, E. Pu, H. Dong, Mater. Sci. Eng. A 685 (2017) 115-122.
DOI URL |
[14] |
H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59 (2011) 4002-4014.
DOI URL |
[15] |
D.P. Yang, P.J. Du, D. Wu, H.L. Yi, J. Mater. Sci. Technol. 75 (2021) 205-215.
DOI URL |
[16] |
Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, J.W. Yan, Mater. Des. 94 (2016) 424-432.
DOI URL |
[17] |
M.H. Zhang, H.Y. Chen, Y.K. Wang, S.J. Wang, R.G. Li, S.L. Li, Y.D. Wang, J. Mater. Sci. Technol. 35 (2019) 1779-1786.
DOI URL |
[18] |
B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457-1464.
DOI URL |
[19] |
J. Han, S.J. Lee, J.G. Jung, Y.K. Lee, Acta Mater. 78 (2014) 369-377.
DOI URL |
[20] |
H. Luo, H. Dong, M. Huang, Mater. Des. 83 (2015) 42-48.
DOI URL |
[21] | A.H. Cottrell, B.A. Bilby,Proc. Phys. Soc. Lond. Sect. A 62 (1949) 49-62. |
[22] |
M.H. Zhang, L.F. Li, J. Ding, Q.B. Wu, Y.D. Wang, J. Almer, F.M. Guo, Y. Ren, Acta Mater. 141 (2017) 294-303.
DOI URL |
[23] |
J.H. Nam, S.K. Oh, M.H. Park, Y.K. Lee, Acta Mater. 206 (2021) 116613.
DOI URL |
[24] |
L. Chen, H.S. Kim, S.K. Kim, B.C. Cooman, ISIJ Int. 47 (2007) 1804-1812.
DOI URL |
[25] |
H.F. Jiang, Q.C. Zhang, X.D. Chen, Z.J. Chen, Z.Y. Jiang, X.P. Wu, J.H. Fan, Acta Mater. 55 (2007) 2219-2228.
DOI URL |
[26] |
A. Yilmaz, Sci. Technol. Adv. Mater. 12 (2011) 063001.
DOI URL |
[27] |
P.G. Mccormick, Acta Metall. 36 (1988) 3061-3067.
DOI URL |
[28] |
E. De Moor, D.K. Matlock, J.G. Speer, M.J. Merwin, Scr. Mater. 64 (2011) 185-188.
DOI URL |
[29] |
S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64 (2011) 649-652.
DOI URL |
[30] |
B. Gao, Q.Q. Lai, Y. Cao, R. Hu, L.R. Xiao, Z.Y. Pan, N.N. Liang, Y.S. Li, G. Sha, M. P. Liu, H. Zhou, X.L. Wu, Y.T. Zhu, Sci. Adv. 6 (2020) eaba8169.
DOI URL |
[31] |
Y. Ma, B.H. Sun, A. Schokel, W.W. Song, D. Ponge, D. Raabe, W. Bleck, Acta Mater. 200 (2020) 389-403.
DOI URL |
[32] |
T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Mater. Sci. Eng. A 528 (2011) 2394-2400.
DOI URL |
[33] |
D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim, Metall. Mater. Trans. A 41 (2010) 397-408.
DOI URL |
[34] |
B. Sun, F. Fazeli, C. Scott, S. Yue, Metall. Mater. Trans. A 47 (2016) 4869-4882.
DOI URL |
[35] |
X. Zhang, R. Teng, T. Liu, Y. Shi, Z. Lv, Q. Zhou, X. Wang, Y. Wang, H. Liu, Z. Xing, Mater. Charact. 184 (2022) 111661.
DOI URL |
[36] | J.P. Hirth, J. Lothe,Theory of Dislocations, 2nd ed., Wiley, New York, 1982. |
[37] |
Z.W. Wang, W.J. Lu, H. Zhao, C.H. Liebscher, J.Y. He, D. Ponge, D. Raabe, Z.M. Li, Sci. Adv. 6 (2020) eaba9543.
DOI URL |
[38] | B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032. |
[39] | J.H. Gao, S.H. Jiang, H.R. Zhang, Y.H. Huang, D.K. Guan, Y.D. Xu, S.K. Guan, L. A. Bendersky, A. V. Davydov, Y. Wu, H.H. Zhu, Y.D. Wang, Z.P. Lu, W.M. Rain- forth, Nature 590 (2021) 262-267. |
[40] |
R. Kalsar, S. Suwas, Scr. Mater. 154 (2018) 207-211.
DOI URL |
[41] |
K.M. Rahman, V.A. Vorontsov, D. Dye, Acta Mater. 89 (2015) 247-257.
DOI URL |
[42] |
Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126 (2017) 74-80.
DOI URL |
[43] |
R. Ding, Y.J. Yao, B.H. Sun, G. Liu, J.G. He, T. Li, X.H. Wan, Z.B. Dai, D. Ponge, D. Raabe, C. Zhang, A. Godfrey, G. Miyamoto, T. Furuhara, Z.G. Yang, S. van der Zwaag, H. Chen, Sci. Adv. 6 (2020) eaay1430.
DOI URL |
[44] |
L. Ma, T. Jia, G. Li, J. Hu, J.A. Jimenez, X. Gao, Mater. Sci. Eng. A 784 (2020) 139333.
DOI URL |
[45] | M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, X.L. Wu, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 7224-7229. |
[46] |
G. Miyamoto, A. Shibata, T. Maki, T. Furuhara, Acta Mater. 57 (2009) 1120-1131.
DOI URL |
[47] |
M. Lebyodkin, L. Dunin-Barkowskii, Y. Brechet, Y. Estrin, L.P. Kubin, Acta Mater. 48 (20 0 0) 2529-2541.
DOI URL |
[48] |
R. Schwab, V. Ruff, Acta Mater. 61 (2013) 1798-1808.
DOI URL |
[49] |
A .A. Howe, Mater. Sci. Technol. 16 (2000) 1264-1266.
DOI URL |
[50] |
J.H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H. Bhadeshia, D.W. Suh, Scr. Mater. 68 (2013) 933-936.
DOI URL |
[51] |
Z.G. Xu, X. Shen, T. Allam, W.W. Song, W. Bleck, Mater. Sci. Eng. A 829 (2022) 142115.
DOI URL |
[52] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14501-14505. |
[53] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
[54] |
H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47 (1999) 1239-1263.
DOI URL |
[55] |
H.J. Gao, Y.G. Huang, Scr. Mater. 48 (2003) 113-118.
DOI URL |
[56] |
Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[57] | X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, Y.T.T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 7197-7201. |
[58] |
B.P.J. Sandvik, C.M. Wayman, Metall. Trans. A 14 (1983) 809-822.
DOI URL |
[59] |
T.M. Hatem, M.A. Zikry, Mater. Sci. Technol. 27 (2011) 1570-1573.
DOI URL |
[60] | S.J. Lee, J. Kim, S.N. Kane, B.C. De Cooman, Acta Mater. 59 (2011) 6809-6819. |
[61] |
V. Gerold, H.P. Karnthaler, Acta Metall. 37 (1989) 2177-2183.
DOI URL |
[62] |
Z.C. Luo, M.X. Huang, Scr. Mater. 142 (2018) 28-31.
DOI URL |
[63] |
Z.C. Luo, M.X. Huang, Scr. Mater. 178 (2020) 264-268.
DOI URL |
[64] |
J.H. Kang, S. Duan, S.J. Kim, W. Bleck, Metall. Mater. Trans. A 47 (2016) 1918-1921.
DOI URL |
[65] |
B.H. Sun, N. Vanderesse, F. Fazeli, C. Scott, J.Q. Chen, P. Bocher, M. Jahazi, S. Yue, Scr. Mater. 133 (2017) 9-13.
DOI URL |
[1] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[2] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[3] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[4] | J. Guo, Q.Y. He, Q.S. Mei, X. Huang, G.L. Wu, O.V. Mishin. Gradient microstructure, recrystallization and mechanical properties of copper processed by high pressure surface rolling [J]. J. Mater. Sci. Technol., 2022, 126(0): 182-190. |
[5] | Zhen Chen, Hongbo Xie, Haile Yan, Xueyong Pang, Yuhui Wang, Guilin Wu, Lijun Zhang, HuTang, Bo Gao, Bo Yang, Yanzhong Tian, Huiyang Gou, Gaowu Qin. Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained architecture [J]. J. Mater. Sci. Technol., 2022, 126(0): 228-236. |
[6] | Jianying Wang, Jianpeng Zou, Hailin Yang, Lijun Zhang, Zhilin Liu, Xixi Dong, Shouxun Ji. Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures [J]. J. Mater. Sci. Technol., 2022, 127(0): 61-70. |
[7] | Xiaorong Liu, Sihan Jiang, Jianlin Lu, Jie Wei, Daixiu Wei, Feng He. The dual effect of grain size on the strain hardening behaviors of Ni-Co-Cr-Fe high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 131(0): 177-184. |
[8] | Jiahao Li, Kejie Lu, Xiaojun Zhao, Xinkai Ma, Fuguo Li, Hongbo Pan, Jieming Chen. A superior strength-ductility synergy of Al0.1CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins [J]. J. Mater. Sci. Technol., 2022, 131(0): 185-194. |
[9] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[10] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[11] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[12] | Wang Chenchong, Zhu Kaiyu, Hedström Peter, Li Yong, Xu Wei. A generic and extensible model for the martensite start temperature incorporating thermodynamic data mining and deep learning framework [J]. J. Mater. Sci. Technol., 2022, 128(0): 31-43. |
[13] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[14] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
[15] | Bohong Zhang, Jie Chen, Pengfei Wang, Bingtao Sun, Yu Cao. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique [J]. J. Mater. Sci. Technol., 2022, 111(0): 111-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||