J. Mater. Sci. Technol. ›› 2023, Vol. 132: 119-131.DOI: 10.1016/j.jmst.2022.06.009
• Research Article • Previous Articles Next Articles
Y. Xinga, C.J. Lia,*(
), Y.K. Mub, Y.D. Jiab, K.K. Songc, J. Tand, G. Wangb,*(
), Z.Q. Zhange,f, J.H. Yia,*(
), J. Eckerte,f,g
Received:2022-04-17
Revised:2022-05-31
Accepted:2022-06-09
Published:2023-01-01
Online:2022-07-01
Contact:
C.J. Li,G. Wang,J.H. Yi
About author:yijianhong@kust.edu.cn (J.H. Yi).Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy[J]. J. Mater. Sci. Technol., 2023, 132: 119-131.
Fig. 1. (a-c) XRD patterns of CrMnFeCoNi HEAs. (a) HEA powders, (b) bulk HEAs after different MA times sintered at 1273 K, and (c) MA35 HEA powders sintered at different temperatures. (d) and (e) SEM and EDX results of the MA35 HEA powders.
| HEA powder | Average grain size (nm) | Lattice distortion (%) | Dislocation density (10-3 cm-2) |
|---|---|---|---|
| MA20 | 5.33 | 1.33 | 36.23 |
| MA25 | 5.14 | 1.37 | 37.89 |
| MA30 | 5.02 | 1.40 | 40.62 |
| MA35 | 4.95 | 1.42 | 42.66 |
| MA40 | 4.66 | 1.50 | 48.97 |
Table 1. Average grain size, lattice distortion, and dislocation density of HEA powders with different MA times.
| HEA powder | Average grain size (nm) | Lattice distortion (%) | Dislocation density (10-3 cm-2) |
|---|---|---|---|
| MA20 | 5.33 | 1.33 | 36.23 |
| MA25 | 5.14 | 1.37 | 37.89 |
| MA30 | 5.02 | 1.40 | 40.62 |
| MA35 | 4.95 | 1.42 | 42.66 |
| MA40 | 4.66 | 1.50 | 48.97 |
Fig. 2. EBSD IPF maps and phase distribution maps of bulk HEAs: (a) 1223 K, (b) 1273 K, (c) 1323 K, and (d) 1373 K. Blue and red represent the FCC and BCC phases, respectively.
| HEA sample | 1223 K | 1273 K | 1323 K | 1373 K |
|---|---|---|---|---|
| Average grain size (μm) | 0.48 | 0.52 | 0.94 | 1.10 |
Table 2. Average grain size of bulk HEAs with different sintering temperatures determined by EBSD.
| HEA sample | 1223 K | 1273 K | 1323 K | 1373 K |
|---|---|---|---|---|
| Average grain size (μm) | 0.48 | 0.52 | 0.94 | 1.10 |
Fig. 3. HADDF TEM micrographs of nanoscale σ phase particles in HPS35 HEA. (a) Substantial amounts of σ phase particles precipitated during the sintering process and distributed uniformly and diffusely in the matrix. (b) Local enlargement micrograph of σ phase particles in the matrix. (c) High-resolution TEM image of the σ phase. (d) Diffraction spots of the [111] crystal band axis of the Cr-rich σ phase obtained after a fast Fourier transform.
Fig. 4. Microstructures and chemical compositions of HEAs prepared at different sintering temperatures. (a), (b), (c), and (d) TEM images and corresponding mapping-scan EDX images of 1223, 1273, 1323, and 1373 K HEAs, respectively. (e) and (f) BF-TEM micrograph, SAED, and point-scan EDX results of the FCC and M23C6 phases within the 1273 K HEA.
| Phase | Chemical composition (at.%) | |||||
|---|---|---|---|---|---|---|
| C | Cr | Mn | Fe | Co | Ni | |
| FCC | 0.86 | 14.32 | 20.88 | 20.19 | 20.10 | 21.65 |
| M23C6 | 20.70 | 53.68 | 11.90 | 6.62 | 4.46 | 2.61 |
| σ | / | 48.81 | 19.20 | 11.76 | 9.60 | 10.61 |
Table 3. Chemical composition of each phase in the HPS35 HEA measured by the TEM-EDX method.
| Phase | Chemical composition (at.%) | |||||
|---|---|---|---|---|---|---|
| C | Cr | Mn | Fe | Co | Ni | |
| FCC | 0.86 | 14.32 | 20.88 | 20.19 | 20.10 | 21.65 |
| M23C6 | 20.70 | 53.68 | 11.90 | 6.62 | 4.46 | 2.61 |
| σ | / | 48.81 | 19.20 | 11.76 | 9.60 | 10.61 |
Fig. 5. (a) APT maps showing the distribution of each element in the HPS35 HEA. (b) Iso-concentration surfaces plotted at 65 at.% Cr and 20 at.% Mn. Concentration profiles for all elements across the matrix-particle-matrix.
Fig. 6. Tensile properties of CrMnFeCoNi HEAs. The engineering stress-strain, true stress-strain, and SHR curves shown in (a), (b), and (c), respectively, for bulk HEAs prepared by sintering HEA powders at 1273 K with different MA time (d), (e), and (f), respectively, for MA35 HEA powders prepared at different sintering temperatures.
Fig. 7. (a-d) SEM micrographs of the fracture surfaces of HEAs sintered at different temperatures: (a) 1223 K, (b) 1273 K, (c) 1323 K, and (d) 1373 K. (e) TEM micrograph of the microcrack of HPS35 HEA after the fracture. (f) Line-EDX pattern from M23C6 phase to microcrack to FCC phase.
Fig. 8. TEM micrographs showing the microstructural evolution of the HPS35 HEA after different tensile strains. (a-c) HEA with 2% tensile strain, (d-f) HEA with 3.5% tensile strain, and (g-i) HEA after the fracture.
Fig. 9. (a) and (b) BF-TEM micrographs of the HPS25 HEA with 2% tensile strain. (c) SAED pattern of the twins in the blue circle area in Fig. 8(b). (d) and (e) EBSD IPF and phase distribution maps of the HPS25 and HPS35 HEAs, respectively. The blue and red parts represent the FCC and M23C6 phases, respectively.
Fig. 10. (a) and (b) BF-TEM micrographs of the 1373 K HEA with 2% tensile strain and partial enlargement of the grains in the green rectangular area. (c) and (d) BF-TEM micrograph of the 1373 K HEA with 8% tensile strain and SAED pattern of the twins in the green area in Fig. 9(b). (e) TEM image showing the interaction between twins and precipitated particles at an 8% true tensile strain for the 1373 K HEA.
Fig. 11. Schematic sketches illustrating the deformation mechanism transitions and features of deformed microstructures for different representative specimens.
| [1] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
| [2] |
W.H. Liu, Y. Wu, J.Y. He, Scr. Mater. 68 (2013) 526-529.
DOI URL |
| [3] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
| [4] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
| [5] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubĕnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
| [6] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
| [7] |
G. Bracq, M. Laurent-Brocq, C. Varvenne, L. Perrière, W.A. Curtin, J.M. Joubert, I. Guillot, Acta Mater. 177 (2019) 266-279.
DOI URL |
| [8] |
J.F. Li, H.W. Luan, L.S. Zhou, A. Amar, R. Li, L.F. Huang, X. Liu, G.M. Le, X. Y. Wang, J. Wu, C.L. Jiang, Mater. Des. 195 (2020) 108999.
DOI URL |
| [9] |
C.M. Wang, J.X. Yu, Y. Zhang, Y. Yu, Mater. Des. 182 (2019) 108040.
DOI URL |
| [10] |
S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Mater. Sci. Eng. A 689 (2017) 122-133.
DOI URL |
| [11] | R.K. Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, Y.Z. Fang, Y. Zhang, J.Z. Jiang, Adv. Eng. Mater. 22 (2020) 20 0 0466. |
| [12] |
S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shan, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
| [13] | B. Gludovatz, A. Hohenwarter, D. Catoor, Science 345 (2014) 1153-1158. |
| [14] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI URL |
| [15] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [16] |
W.J. Fu, W. Zheng, Y.J. Huang, F.M. Guo, S.S. Jiang, P. Xue, Y. Ren, H.B. Fan, Z. L. Ning, J.F. Sun, Mater. Sci. Eng. A 789 (2020) 139579.
DOI URL |
| [17] |
M. Naeem, H.Y. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, S. Lan, Z.D. Wu, Y. Wu, Z.P. Lu, C.T. Liu, X.L. Wang, Scr. Mater. 188 (2020) 21-25.
DOI URL |
| [18] |
F.G. Coury, M. Kaufman, A.J. Clarke, Acta Mater. 175 (2019) 66-81.
DOI URL |
| [19] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
| [20] |
M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Acta Mater. 88 (2015) 355-365.
DOI URL |
| [21] | A. Gali, E.P. George, Intermetallics 39 (2013) 74-78. |
| [22] |
J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, D. M. Fabijanic, Scr. Mater. 186 (2020) 230-235.
DOI URL |
| [23] |
B. Cai, B. Liu, S. Kabra, Y.Q. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471-480.
DOI URL |
| [24] |
B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268.
DOI URL |
| [25] | M. Hassanpour-Esfahani, A. Zarei-Hanzaki, H.R. Abedi, H.S. Kim, D. Yim, Inter- metallics 109 (2019) 145-156. |
| [26] |
M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon, H.S. Kim, J. Alloys Compd. 730 (2018) 242-248.
DOI URL |
| [27] |
P. Lu, T.W. Zhang, D. Zhao, S.G. Ma, Q. Li, Z.H. Wang, J. Alloys Compd. 815 (2020) 152479.
DOI URL |
| [28] |
J. Gu, S. Ni, Y. Liu, M. Song, Mater. Sci. Eng. A 755 (2019) 289-294.
DOI URL |
| [29] |
P. Asghari-Rad, P. Sathiyamoorthi, N.T.C. Nguyen, A. Zargaran, T.S. Kim, H.S. Kim, Scr. Mater. 190 (2021) 69-74.
DOI URL |
| [30] |
J.W. Won, S. Lee, S.H. Park, M. Kang, K.R. Lim, C.H. Park, Y.S. Na, J. Alloys Compd. 742 (2018) 290-295.
DOI URL |
| [31] |
F. Pr ˚uša, A. Šenková, V. Kučera, J. Čapek, D. Vojtĕch, Mater. Sci. Eng. A 734 (2018) 341-352.
DOI URL |
| [32] |
B. Schuh, R. Pippan, A. Hohenwarter, Mater. Sci. Eng. A 748 (2019) 379-385.
DOI URL |
| [33] |
Z.Q. Fu, A. Hoffman, B.E. MacDonald, Z.F. Jiang, W.P. Chen, M. Arivu, H.M. Wen, E.J. Lavernia, Acta Mater. 179 (2019) 372-382.
DOI URL |
| [34] | C.L. Chu, W.P. Chen, Z. Chen, Z.F. Jiang, H. Wang, Z.Q. Fu, Acta Metall.Sin.-Engl. Lett. 34 (2021) 445-454. |
| [35] |
Y.H. Xie, Y.F. Luo, T. Xia, W. Zeng, J. Wang, J.M. Liang, D.S. Zhou, D.L. Zhang, J. Alloys Compd. 819 (2020) 152937.
DOI URL |
| [36] |
T. Luo, H.L. Zhang, R.R. Liu, P.N. Du, Z.H. Huang, Q.F. Pan, Z.H. Liao, Y. Xu, Mater. Lett. 293 (2021) 129682.
DOI URL |
| [37] | Y. Liu, J.S. Wang, Q.H. Fang, B. Liu, Y. Wu, S.Q. Chen, Intermetallics 68 (2016) 16-22. |
| [38] |
S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, J. Alloys Compd. 698 (2017) 591-604.
DOI URL |
| [39] |
M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Acta Mater. 203 (2021) 116454.
DOI URL |
| [40] |
G.D. Li, M.W. Liu, S. Lyu, M. Nakatani, R.X. Zheng, C.L. Ma, Q.S. Li, K. Ameyama, Scr. Mater. 191 (2021) 196-201.
DOI URL |
| [41] |
Z.M. Li, Acta Mater. 164 (2019) 400-412.
DOI URL |
| [42] |
J. Su, D. Raabe, Z.M. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
| [43] |
D. You, G. Yang, Y.H. Choa, J.K. Kim, Mater. Sci. Eng. A 831 (2022) 142039.
DOI URL |
| [44] |
G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Acta Mater. 161 (2018) 338-351.
DOI URL |
| [45] |
W.H. Ren, L.M. Wang, J. Alloys Compd. 905 (2022) 164013.
DOI URL |
| [46] |
G. Laplanche, Acta Mater. 199 (2020) 193-208.
DOI URL |
| [47] |
Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Y. Yang, S.Q. Ma, D.W. Yi, J. Alloys Compd. 509 (2011) 5242-5249.
DOI URL |
| [48] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
| [49] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5 (2016) 276-283.
DOI URL |
| [50] | R.R. Unocic, L. Kovarik, C. Shen, Superalloys (2008) 377-385. |
| [51] |
O.V.A.M. Meyers, A.V. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
| [1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| [2] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 10-18. |
| [3] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
| [4] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [5] | Peng Chen, Xiyu Yao, Moataz M.Attallah, Ming Yan. In-situ alloyed CoCrFeMnNi high entropy alloy: Microstructural development in laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 123(0): 123-135. |
| [6] | Hongxiang Jiang, Yan Song, Lili Zhang, Jie He, Shixin Li, Jiuzhou Zhao. Efficient grain refinement of Al alloys induced by in-situ nanoparticles [J]. J. Mater. Sci. Technol., 2022, 124(0): 14-25. |
| [7] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
| [8] | Z. Li, W.T. Nash, S.P. O'Brien, Y. Qiu, R.K. Gupta, N. Birbilis. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125(0): 81-96. |
| [9] | R.Y. Zhang, H.L. Qin, Z.N. Bi, Y.T. Tang, J. Araújo de Oliveira, T.L. Lee, C. Panwisawas, S.Y. Zhang, J. Zhang, J. Li, H.B. Dong. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy [J]. J. Mater. Sci. Technol., 2022, 126(0): 169-181. |
| [10] | Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures [J]. J. Mater. Sci. Technol., 2022, 104(0): 236-243. |
| [11] | Meng Dai, P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu. Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 122(0): 243-254. |
| [12] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [13] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
| [14] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
| [15] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
