J. Mater. Sci. Technol. ›› 2023, Vol. 132: 132-143.DOI: 10.1016/j.jmst.2022.05.049
• Research Article • Previous Articles Next Articles
Ziling Chenga,b, Guojun Changa,b, Bai Xuea,b,c,*(
), Lan Xiea,b,c,*(
), Qiang Zhengd
Received:2022-04-01
Revised:2022-05-12
Accepted:2022-05-14
Published:2023-01-01
Online:2022-07-01
Contact:
Bai Xue,Lan Xie
About author:mm.lanxie@gzu.edu.cn (L. Xie).Ziling Cheng, Guojun Chang, Bai Xue, Lan Xie, Qiang Zheng. Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding[J]. J. Mater. Sci. Technol., 2023, 132: 132-143.
Fig. 2. SEM images of (a) MS and (b, c) Ni@MS. EDS mapping images of (d) the scanning view and (e) Ni element of Ni@MS. XPS spectra of Ni@MS, (f) full-range spectrum, (g) high-resolution C 1s core level spectrum, (h) high-resolution Ni 2p core level spectrum, and (i) high-resolution N 1s core level spectrum.
Fig. 3. SEM images of (a) MAX powders and (b) etched multilayered MXene powders. (c) TEM image of exfoliated MXene nanosheets. (d) Optical image of MXene dispersion. (e) XRD patterns of MAX, multilayered MXene and exfoliated MXene. XPS survey spectra of exfoliated MXene, (f) the full-range spectrum, (g) XPS C 1s core level spectrum, (h) XPS O 1s core level spectrum, and (i) XPS Ti 2p core level spectrum.
Fig. 4. Cross-sectional SEM images of (a) Ni@MS/RCG-1 hybrid aerogel, (b) Ni@MS/RCG-3 hybrid aerogel, and (c) Ni@MS/RCG-5 hybrid aerogel. (a’-c’) the corresponding high-magnification SEM images in the rectangle of SEM images (a-c).
Fig. 5. Cross-sectional SEM images of (a, a′) Ni@MS/RCG-0/PEG, (b, b′) Ni@MS/RCG-1/PEG, (c, c′) Ni@MS/RCG-3/PEG, and (d, d′) Ni@MS/RCG-5/PEG. EDS mapping images of (e) the scanning view, (f) Ni element, (g) C element, and (h) O element of Ni@MS/RCG-5/PEG.
Fig. 7. EDS mapping images of MX/Ni@MS/RCG-5/PEG: (a) the scanning view, (b) C element, (c) O element, (d) N element, (e) Ni element, and (f) Ti element.
Fig. 8. DSC curves of (a) heating and (b) cooling procedures of different samples. (c) DSC curves of Ni@MS/RCG-5/PEG after 50th thermal cycles. (d, e) Photographs of different samples on the hot stage of different temperatures.
| Sample | Tm | Tc | ΔHm | ΔHc |
|---|---|---|---|---|
| (°C) | (°C) | (J g-1) | (J g-1) | |
| PEG 6000 | 59.0 | 40. 9 | 157.3 | 155.7 |
| MX/Ni@MS/RCG-0/PEG | 66.4 | 35.7 | 148.8 | 146.8 |
| MX/Ni@MS/RCG-1/PEG | 64.6 | 34.3 | 139.3 | 136.8 |
| MX/Ni@MS/RCG-3/PEG | 66.2 | 33.6 | 150.0 | 137.9 |
| MX/Ni@MS/RCG-5/PEG | 63.0 | 38.9 | 154.3 | 150.3 |
| MX/Ni@MS/RCG-5/PEG50th | 60.5 | 38.9 | 150.2 | 147.7 |
Table 1. Representative thermal parameters of different samples obtained during DSC measurements.
| Sample | Tm | Tc | ΔHm | ΔHc |
|---|---|---|---|---|
| (°C) | (°C) | (J g-1) | (J g-1) | |
| PEG 6000 | 59.0 | 40. 9 | 157.3 | 155.7 |
| MX/Ni@MS/RCG-0/PEG | 66.4 | 35.7 | 148.8 | 146.8 |
| MX/Ni@MS/RCG-1/PEG | 64.6 | 34.3 | 139.3 | 136.8 |
| MX/Ni@MS/RCG-3/PEG | 66.2 | 33.6 | 150.0 | 137.9 |
| MX/Ni@MS/RCG-5/PEG | 63.0 | 38.9 | 154.3 | 150.3 |
| MX/Ni@MS/RCG-5/PEG50th | 60.5 | 38.9 | 150.2 | 147.7 |
Fig. 9. (a) Comparison of thermal conductivities of Ni@MS/RCG/PEG and MX/Ni@MS/RCG/PEG composites. Infrared (IR) photographs of the representative PEG and MX/Ni@MS/RCG-5/PEG samples in the (b) heating and (c) cooling processes.
Fig. 10. (a) EMI SET, (b) average SER, SEA and SET, and (c) average A-R coefficients of Ni@MS/RCG/PEG PCMs with different GNP content in X-band; (d) EMI SET, (e) average SER, SEA and SET, and (f) average A-R coefficients of MX/Ni@MS/RCG/PEG PCMs with different GNP content in X-band.
Fig. 11. Comparison of EMI shielding properties (SET), thermal conductivities (TC) and latent heat retention rates (η) for different CPCMs [67], [68], [69], [70], [71], [72].
| [1] |
H. Wei, S. Yang, C. Wang, C. Qiu, K. Lin, J. Han, Y. Lu, X. Liu, J. Mater. Sci. Technol. 86 (2021) 11-19.
DOI URL |
| [2] |
W. Chen, X. Liang, W. Han, S. Wang, X. Gao, Z. Zhang, Y. Fang, J. Mater. Sci. Technol. 100 (2022) 27-35.
DOI URL |
| [3] |
S.R. Yan, M.A. Fazilati, N. Samani, H.R. Ghasemi, D. Toghraie, N. Quyen, A. Karimipour, J. Energy Storage 30 (2020) 101445.
DOI URL |
| [4] | H.Y. Yang, S.Y. Wang, X. Wang, W.X. Chao, N. Wang, X.L. Ding, F. Liu, Q.Q. Yu, T.H. Yang, Z.L. Yang, J. Li, C.Y. Wang, G.L. Li, Appl. Energy 261 (2020) 114481. |
| [5] |
H.L. Hu, Compos. Pt. B-Eng. 195 (2020) 108094.
DOI URL |
| [6] |
M. Li, M.R. Chen, Z.S. Wu, J.X. Liu, Energy Convers. Manag. 83 (2014) 325-329.
DOI URL |
| [7] |
B.T. Tang, L.J. Wang, Y.J. Xu, J.H. Xiu, S.F. Zhang, Sol. Energy Mater. Sol. Cells 144 (2016) 1-6.
DOI URL |
| [8] | M. Mehrali, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, M. Silakhori, Energy Con- vers. Manag. 67 (2013) 275-282. |
| [9] |
Z. Li, W.G. Sun, G. Wang, Z.G. Wu, Sol. Energy Mater. Sol. Cells 128 (2014) 447-455.
DOI URL |
| [10] | F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang, Y. Wang, Nanoscale 12 (2020) 4005-4017. |
| [11] |
T.D. Dao, H.M. Jeong, Carbon 99 (2016) 49-57 N Y.
DOI URL |
| [12] | S.I. Golestaneh, A. Mosallanejad, G. Karimi, M. Khorram, M. Khashi, Appl. Energy 182 (2016) 409-417. |
| [13] |
W. Aftab, X.Y. Huang, W.H. Wu, Z.B. Liang, A. Mahmood, R. Zou, Energy Environ. Sci. 11 (2018) 1392-1424.
DOI URL |
| [14] | J. Khodadadi, L.W. Fan, H. Babaei, Renew. Sustain. Energy Rev. 24 (2013) 418-444. |
| [15] |
S.S. Chandel, T. Agarwal, Renew. Sustain. Energy Rev. 67 (2017) 581-596.
DOI URL |
| [16] |
X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, G. Wang, Chem. Eng. J. 356 (2019) 641-661.
DOI URL |
| [17] | K. Tumirah, M.Z. Hussein, Z. Zulkarnain, R. Rafeadah, Energy 66 (2014) 881-890. |
| [18] |
Z. Sun, L.J. Zhao, H.X. Wan, H. Liu, D.Z. Wu, X.D. Wang, Chem. Eng. J. 396 (2020) 125317.
DOI URL |
| [19] |
Y. Zhang, J. Gu, Nano Micro Lett. 14 (2022) 89.
DOI URL |
| [20] |
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res. (2022), doi: 10.1007/s12274-022-4358-7.
DOI URL |
| [21] | X. Chen, H.Y. Gao, L.W. Xing, W.J. Dong, A. Li, P.P. Cheng, Energy Storage Mater. 18 (2018) 280-288. |
| [22] |
Y. Zhou, X.D. Liu, D.K. Sheng, C.H. Lin, F.C. Ji, L. Dong, S.B. Xu, H.H. Wu, Y. M. Yang, Chem. Eng. J. 338 (2018) 117-125.
DOI URL |
| [23] |
P. Cheng, H.Y. Gao, X. Chen, Y.Y. Chen, M.Y. Han, L.W. Xing, P.P. Liu, G. Wang, Chem. Eng. J. 397 (2020) 125330.
DOI URL |
| [24] |
C.Z. Chen, L. Wang, Y. Huang, Mater. Lett. 63 (2009) 569-571.
DOI URL |
| [25] | C.Z. Chen, Y.Y. Zhao, W.M. Liu, Renew. Energy 60 (2013) 222-225. |
| [26] |
Y. Lu, X.D. Xiao, J. Fu, C.M. Huan, S. Qi, Y.J. Zhan, Y.Q. Zhu, G. Xu, Chem. Eng. J. 355 (2019) 532-539.
DOI URL |
| [27] |
F.L. Yu, H. Deng, Q. Zhang, K. Wang, C.L. Zhang, F. Chen, Q. Fu, Polymer 54 (2013) 6425-6436 (Guildf).
DOI URL |
| [28] |
Y. Han, K. Ruan, J. Gu, Nano Res. (2022), doi: 10.1007/s12274-022-4159-z.
DOI URL |
| [29] | J. Yang, X.F. Li, S. Han, Y.T. Zhang, P. Min, N. Koratkar, Z.Z. Yu, J. Mater. Chem. A 4 (2016) 18067-18074. |
| [30] |
J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, B.H. Xie, M.B. Yang, W. Yang, Sol. Energy Mater. Sol. Cells 174 (2018) 56-64.
DOI URL |
| [31] |
J.H. Huang, B.N. Zhang, M. He, X. Huang, G.J. Wu, G.Q. Yin, Y.D. Cui, J. Mater. Sci. 55 (2020) 7337-7350.
DOI URL |
| [32] | X.H. Yang, J.B. Yu, Z.X. Guo, L.W. Jin, Y.L. He, Appl. Energy 239 (2019) 142-156. |
| [33] | C.H. Wang, T. Lin, N. Li, H.P. Zheng, Renew. Energy 96 (2016) 960-965. |
| [34] |
H.H. Liao, W.H. Chen, Y. Liu, Q. Wang, Compos. Sci. Technol. 189 (2020) 108010.
DOI URL |
| [35] | Y. Liu, Y. Xia, K. An, C. Huang, W. Cui, S. Wei, R. Ji, F. Xu, H. Zhang, L. Sun, J. Mater. Sci. Technol. 35 (2019) 939-945. |
| [36] |
Y.P. Xia, Q.T. Li, R. Ji, H.Z. Zhang, F. Xu, P.R. Huang, Y.J. Zou, H.L. Chu, X.C. Lin, L. X. Sun, ACS Appl. Mater. Interfaces 12 (2020) 41398-41409.
DOI URL |
| [37] | F. Xue, X.Z. Jin, X. Xie, X.D. Qi, J.H. Y, Y. W, Nanoscale 11 (2019) 18691-18701. |
| [38] |
Z.Y. Ling, Z.G. Zhang, G.Q. Shi, X.M. Fang, L. Wang, X.N. Gao, Y.T. Fang, T. Xu, S.F. Wang, X.H. Liu, Renew. Sustain. Energy Rev. 31 (2014) 427-438.
DOI URL |
| [39] |
W.X. Wu, G.Q. Zhang, X.F. Ke, X.Q. Yang, Z.Y. Wang, C.Z. Liu, Energy Convers. Manag. 101 (2015) 278-284.
DOI URL |
| [40] |
Y.H. Huang, W.L. Cheng, R. Zhao, Energy Convers. Manag. 182 (2019) 9-20.
DOI URL |
| [41] |
X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li, Y.Y. Yang, Y.X. Cao, W.J. Wang, H. Wu, S.Y. Guo, Chem. Eng. J. 380 (2020) 122475.
DOI URL |
| [42] |
L. Li, Y.X. Cao, X.Y. Liu, J.F. Wang, Y.Y. Yang, W.J. Wang, ACS Appl. Mater. Inter- faces 12 (2020) 27350-27360.
DOI URL |
| [43] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
| [44] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
| [45] | P. Song, Z. Ma, H. Qiu, Y. Ru, J.W. Gu, Nano Micro Lett. 14 (2022) 51. |
| [46] | Y.J. Liang, Y.L. Tong, Z.C. Tao, Q.G. Guo, B.Y. Hao, Z.J. Liu, Macromol. Mater. Eng. 306 (2021) 210 0 055. |
| [47] |
Q. Liu, Y. Zhang, Y. Liu, C. Li, Z. Liu, B. Zhang, Q. Zhang, J. Mater. Sci. Technol. 110 (2022) 246-259.
DOI URL |
| [48] | H.J. Duan, H.X. Zhu, J.F. Gao, D.X. Yan, K. Dai, Y.Q. Yang, G.Z. Zhao, Y.Q. Liu, Z. M. Li, J. Mater. Chem. A 8 (2020) 9146-9159. |
| [49] | A. Sheng, W. Ren, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao, Y.Q. Liu, Z.M. Li, Compos. A Appl. Sci. Manuf. 129 (2020) 105692. |
| [50] |
J. Sudagar, J.S. Lian, W. Sha, J. Alloy. Compd. 571 (2013) 183-204.
DOI URL |
| [51] |
J.B. Park, H. Rho, A.N. Cha, H. Bae, S.H. Lee, S.W. Ryu, T. Jeong, J.S. Ha, Appl. Surf. Sci. 516 (2020) 145745.
DOI URL |
| [52] |
A. Sheng, Y.Q. Yang, D.X. Yan, K. Dai, H.J. Duan, G.Z. Zhao, Y.Q. Liu, Z.M. Li, Carbon 167 (2020) 530-540 N Y.
DOI URL |
| [53] |
T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen, T. Peng, F. Khan, J. Feng, P. Song, Y. Zhao, J. Mater. Sci. Technol. 111 (2022) 66-75.
DOI URL |
| [54] | X.Y. Liu, X.X. Jin, L. Li, J.F. Wang, Y.Y. Yang, Y.X. Cao, W.J. Wang, J. Mater. Chem. A 8 (2020) 12526-12537. |
| [55] | Y. Zhang, K. Ruan, J.W. Gu, Small 17 (2021) 2101951. |
| [56] |
G.Q. Qi, C.L. Liang, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, Sol. Energy Mater. Sol. Cells 123 (2014) 171-177.
DOI URL |
| [57] |
X. Chen, J.H. Chen, T.T. You, K. Wang, F. Xu, Carbohydr. Polym. 125 (2015) 85-91.
DOI URL |
| [58] |
X. Wei, X.Z. Jin, N. Zhang, X.D. Qi, J.H. Yang, Z.W. Zhou, Y. Wang, Carbohydr. Polym. 253 (2021) 117290.
DOI URL |
| [59] | L.J. Chen, R.Q. Zou, W. Xia, Z.P. Liu, Y.Y. Shang, J.L. Zhu, Y.X. Wang, J.H. Lin, D. G. Xia, A.Y. Cao, ACS Nano 6 (2012) 10884-10892. |
| [60] |
J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z.Y. Liu, B.H. Xie, M.B. Yang, W. Yang, Mater. Horiz. 6 (2019) 250-273.
DOI URL |
| [61] | X.Q. Fan, L. Liu, X. Jin, W.T. Wang, S.F. Zhang, B.T. Tang, J. Mater. Chem. A 7 (2019) 14319. |
| [62] |
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Nano Micro Lett. 13 (2021) 162.
DOI URL |
| [63] |
Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, ACS Appl. Mater. Interfaces 12 (2020) 8704-8712.
DOI URL |
| [64] | H.J. Zhou, H. Deng, L. Zhang, Z.Q. Wu, S. Deng, W.X. Yang, Q. Zhang, F. Chen, Q. Fu, Compos. A Appl. Sci. Manuf. 82 (2016) 20-33. |
| [65] | S.M. Zhang, H. Deng, Q. Zhang, Q. Fu, ACS Appl. Mater. Interfaces 6 (2014) 6835-6844. |
| [66] | W.X. Yang, Z.D. Zhao, K. Wu, R. Huang, T.Y. Liu, H. Jiang, F. Chen, J. Mater. Chem. C 5 (2017) 3748-3756. |
| [67] |
X.L. Li, M.J. Sheng, S. Gong, H. Wu, X.L. Chen, X. Lu, J.P. Qu, Chem. Eng. J. 430 (2022) 132928.
DOI URL |
| [68] | H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang, Y. Xu, X.H. Liu, Compos. Sci. Tech- nol. 210 (2021) 108835. |
| [69] |
Y.J. He, Y.W. Shao, Y.Y. Xiao, J.H. Yang, X.D. Qi, Y. Wang, ACS Appl. Mater. Inter- faces 14 (2022) 6057-6070.
DOI URL |
| [70] |
S. Gong, X.X. Sheng, X.L. Li, M.J. Sheng, H. Wu, Xi. Lu, J.P. Qu, Adv. Funct. Mater. 32 (2022) 2200570.
DOI URL |
| [71] | M. Zhou, J.W. Wang, Y. Zhao, G.H. Wang, W.H. Gu, G.B. Ji, Carbon 183 (2021) 515-524 N Y. |
| [72] | X. Lu, Y.F. Zheng, J.L. Yang, J.P. Qu, Compos. Part B 199 (2020) 108308. |
| [1] | Lei Liu, Zhewen Ma, Menghe Zhu, Lina Liu, Jinfeng Dai, Yongqian Shi, Jiefeng Gao, Toan Dinh, Thanh Nguyen, Long-Cheng Tang, Pingan Song. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection [J]. J. Mater. Sci. Technol., 2023, 132(0): 59-68. |
| [2] | Qiang Peng, Meng Ma, Si Chen, Yanqin Shi, Huiwen He, Xu Wang. Magnetic-conductive bi-gradient structure design of CP/PGFF/Fe3O4 composites for highly absorbed EMI shielding and balanced mechanical strength [J]. J. Mater. Sci. Technol., 2023, 133(0): 102-110. |
| [3] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
| [4] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
| [5] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
| [6] | Fudong Zhang, Penggang Ren, Zhengzheng Guo, Jin Wang, Zhengyan Chen, Ze Zong, Jie Hu, Yanling Jin, Fang Ren. Asymmetric multilayered MXene-AgNWs/cellulose nanofiber composite films with antibacterial properties for high-efficiency electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 129(0): 181-189. |
| [7] | Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. J. Mater. Sci. Technol., 2022, 117(0): 238-250. |
| [8] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
| [9] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
| [10] | Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 246-259. |
| [11] | Zheng Huang, Zhuxian Yang, Mian Zahid Hussain, Quanli Jia, Yanqiu Zhu, Yongde Xia. Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 84(0): 76-85. |
| [12] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
| [13] | Xiaolong Li, Xinxin Sheng, Yongqiang Guo, Xiang Lu, Hao Wu, Ying Chen, Li Zhang, Junwei Gu. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities [J]. J. Mater. Sci. Technol., 2021, 86(0): 171-179. |
| [14] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
| [15] | Chaobin Bi, Kaicheng Xu, Chaoquan Hu, Ling Zhang, Zhongbo Yang, Shuaipeng Tao, Weitao Zheng. Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design [J]. J. Mater. Sci. Technol., 2021, 75(0): 118-125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
