J. Mater. Sci. Technol. ›› 2022, Vol. 113: 147-157.DOI: 10.1016/j.jmst.2021.11.008
• Research article • Previous Articles Next Articles
Shuang Liua,b,c, Mengjie Shenga,b,c, Hao Wua,b,c, Xuetao Shid,e, Xiang Lua,b,c,*(
), Jinping Qua,b,c,*(
)
Received:2021-11-08
Revised:2021-11-24
Accepted:2021-11-27
Published:2022-01-02
Online:2022-06-24
Contact:
Xiang Lu,Jinping Qu
About author:jpqu@hust.edu.cn (J. Qu).Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities[J]. J. Mater. Sci. Technol., 2022, 113: 147-157.
Fig. 1. SEM images of NW-⊥(a1, a2, a3), NW-//(a4), WPC-6-⊥ (b1, b2, b3), WPC-6-// (b4), WPC-8-⊥ (c1, c2, c3), WPC-8-// (c4), WPC-10-⊥ (d1, d2, d3) and WPC-10-// (d4).
Fig. 3. The electrical conductivity (a), EMI SE (b), bar chart of SET, SEA, and SER (c) and power coefficient (d) of WPC-6-⊥, WPC-6-//, WPC-8-⊥, WPC-8-//, WPC-10-⊥ and WPC10-//.
Fig. 4. SEM images of WP-0 (a), WP-1 (b), WP-2 (c), WP-3 (d) and WP-4 (e), elemental mappings of Fe for WP-4 (f), FTIR spectra (g) and XRD patterns (h) of WPC, PEG, Fe3O4 and PCCs.
| Samples | Conductivity (S/m) | Frequency (GHz) | EMI SE (dB) | Refs. |
|---|---|---|---|---|
| Graphene/PEI | 2.2 × 10-3 | 8.2-12.4 | 13 | 40 |
| Graphene/PMMA | 3.11 | 8-12 | 19 | 41 |
| Graphene/PDMS | 180 | 8-12 | 20 | 42 |
| Graphene/PS | 1.25 | 8.2-12.4 | 29 | 43 |
| WPC-10-// | 574.7 | 8.2-12.4 | 40 | This work |
| Sugarcane carbon aerogel | 96.4 | 8.2-12.4 | 51 | 44 |
| Carbon foam | 240 | 8.2-12.4 | 51 | 45 |
| WP-4 | / | 8.2-12.4 | 55 | This work |
Table 1. Comparison of EMI shielding performances for different samples.
| Samples | Conductivity (S/m) | Frequency (GHz) | EMI SE (dB) | Refs. |
|---|---|---|---|---|
| Graphene/PEI | 2.2 × 10-3 | 8.2-12.4 | 13 | 40 |
| Graphene/PMMA | 3.11 | 8-12 | 19 | 41 |
| Graphene/PDMS | 180 | 8-12 | 20 | 42 |
| Graphene/PS | 1.25 | 8.2-12.4 | 29 | 43 |
| WPC-10-// | 574.7 | 8.2-12.4 | 40 | This work |
| Sugarcane carbon aerogel | 96.4 | 8.2-12.4 | 51 | 44 |
| Carbon foam | 240 | 8.2-12.4 | 51 | 45 |
| WP-4 | / | 8.2-12.4 | 55 | This work |
Fig. 7. To pair and connect the mobile phone and the Bluetooth speaker (a), Wrap the speaker with tinfoil (b), Open a gap in the tinfoil (c) and the WP-4 is pressed on the gap groove (d).
Fig. 8. The DSC curves for pure PEG (a), WP-0 (b), WP-1 (c), WP-2 (d), WP-3 (e) and WP-4 (f), melting and freezing enthalpy (g) and melting and freezing temperature (h) of pure PEG and various PCCs, λ and η values of various PCCs (i).
| PCCs | | λ (%) | η (%) | Ref. |
|---|---|---|---|---|
| PEG/MDI/PVA | 72.8 | 42.3 | - | 50 |
| PEG/MA/formaldehyde | 109.4 | 63.4 | - | 51 |
| PEG/cellulose | 78.6 | 43.6 | 52.5 | 52 |
| PEG/Diatomite/EG | 83.5 | 58.3 | 120.2 | 53 |
| PEG/EG | 110.4 | 59.0 | 67.4 | 54 |
| PEG/almond shell biochar | 82.7 | 43.8 | 72.9 | 55 |
| PEG/Southern pine | 39.4 | 32.5 | 76.5 | 56 |
| PEG/Carbonized wood flour | 98.1 | 56.6 | - | 57 |
| WPC-4 | 109.5 | 64.6 | 99.8 | This work |
Table 2. The$\text{ }\!\!\Delta\!\!\text{ }{{H}_{\text{m}}}$, λ and η values of different PEG-based PCCs in the literature.
| PCCs | | λ (%) | η (%) | Ref. |
|---|---|---|---|---|
| PEG/MDI/PVA | 72.8 | 42.3 | - | 50 |
| PEG/MA/formaldehyde | 109.4 | 63.4 | - | 51 |
| PEG/cellulose | 78.6 | 43.6 | 52.5 | 52 |
| PEG/Diatomite/EG | 83.5 | 58.3 | 120.2 | 53 |
| PEG/EG | 110.4 | 59.0 | 67.4 | 54 |
| PEG/almond shell biochar | 82.7 | 43.8 | 72.9 | 55 |
| PEG/Southern pine | 39.4 | 32.5 | 76.5 | 56 |
| PEG/Carbonized wood flour | 98.1 | 56.6 | - | 57 |
| WPC-4 | 109.5 | 64.6 | 99.8 | This work |
Fig. 11. photographs of water contact angle test (a), digital image of static water droplets (stained with Rhodamine B) on the surface (b) and water immersion test (c).
| [1] |
B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, A.C.S. Nano 14 (2020) 16590-16599.
DOI URL |
| [2] |
S.L. Tariq, H.M. Ali, M.A. Akram, M.M. Janjua, J. Energy Storage 30 (2020) 101497.
DOI URL |
| [3] |
T. Ahmed, M. Bhouri, D. Groulx, M. White, Appl. Sci. 9 (2019) 902.
DOI URL |
| [4] |
S. Gong, Y. Ding, X. Li, S. Liu, H. Wu, X. Lu, J.P. Qu, Compos. Part A Appl. Sci. Manuf. 149 (2021) 106505.
DOI URL |
| [5] |
X.L. Li, M.J. Sheng, S. Gong, H. Wu, X.L. Chen, X. Lu, J.P. Qu, Chem. Eng. J. 430 (2022) 132928.
DOI URL |
| [6] |
S. Liu, H. Wu, Y. Du, X. Lu, J.P. Qu. Sol. Energ. Mater. Sol. C. 230 (2021) 111187.
DOI URL |
| [7] |
X. Sheng, D. Dong, X. Lu, L. Zhang, Y. Chen, Compos. Part A Appl. Sci. Manu. 138 (2020) 106067.
DOI URL |
| [8] |
S. Parvate, J. Singh, P. Dixit, J.R. Vennapusa, T.K. Maiti, S. Chattopadhyay, ACS Appl. Polym. Mater. 3 (2021) 1866-1879.
DOI URL |
| [9] |
Z. Said, A.A. Hachicha, S. Aberoumand, B.A.A. Yousef, E.T. Sayed, E. Bellos, Prog. Energy Combust. Sci. 84 (2021) 100898.
DOI URL |
| [10] |
H. Wu, X.P. Hu, X.L. Li, M.J. Sheng, X.X. Sheng, X. Lu, J.P. Qu, Compos. Part A-Appl. Sci. Manu. 152 (2022) 106713.
DOI URL |
| [11] |
X.L. Li, X.X. Sheng, Y.Q. Guo, X. Lu, H. Wu, Y. Chen, L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 86 (2021) 171-179.
DOI URL |
| [12] |
W. Zhang, X. Zhang, Z. Huang, Z. Yin, R. Wen, Y. Huang, X. Wu, X. Min, J. Mater. Sci. Technol. 34 (2018) 379-386.
DOI URL |
| [13] | Y.Q. Guo, K.P. Ruan, J.W. Gu, Mater. Today Phys. 20 (2021) 100449. |
| [14] |
J. Yang, L.-.S. Tang, L. Bai, R.-.Y. Bao, Z. Liu, B.-.H. Xie, M.-.B. Yang, W. Yang, ACS Sustain. Chem. Eng. 6 (2018) 6761-6770.
DOI URL |
| [15] |
Q. Zhang, J. Liu, Sol. Energy Mater. Sol. Cells 179 (2018) 217-222.
DOI URL |
| [16] |
Y. Wang, Y.N. Gao, T.N. Yue, X.D. Chen, M. Wang, Appl. Surf. Sci. 563 (2021) 150255.
DOI URL |
| [17] |
S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, Y. Yan, Renew. Sust. Energ. Rev. 135 (2021) 110127.
DOI URL |
| [18] | M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen, S.Y. Guo, Carbon 177 (2021) 377-402. |
| [19] |
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui, X. Tan, G. Gou, J. Jian, H. Xu, Y. Qiao, Y. Yang, S. Zhang, T.L. Ren, ACS Nano 15 (2021) 8907-8918.
DOI URL |
| [20] | T.N. Yue, Y.N. Gao, Y. Wang, Y.D. Shi, J.B. Shen, H. Wu, M. Wang, Polym. Com-pos. 42 (2021) 1396-1406. |
| [21] |
J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Compos. Part A Appl. Sci. Manuf. 140 (2021) 106188.
DOI URL |
| [22] | C.B. Li, Y.J. Li, Q. Zhao, Y. Luo, G.Y. Yang, Y. Hu, J.J. Jiang, ACS Appl. Mater. In- terfaces 12 (2020) 30686-30694. |
| [23] |
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, Z. Xie, Chem. Eng. J. 381 (2020) 122696.
DOI URL |
| [24] |
K.P. Ruan, Y.Q. Guo, J.W. Gu, Macromolecules 54 (2021) 4934-4944.
DOI URL |
| [25] |
J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu, L. Chen, Y. Song, S. Han, M. Xi, C. Zhang, N. Li, Z. Wang, Chem. Eng. J 421 (2021) 129763.
DOI URL |
| [26] |
Y. Zhang, K. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
| [27] |
Z. Xu, M. Liang, X. He, Q. Long, J. Yu, K. Xie, L. Liao, Compos. Part A Appl. Sci. Manuf. 119 (2019) 111-118.
DOI URL |
| [28] | Y. Cui, K. Yang, J. Wang, T. Shah, Q. Zhang, B. Zhang, Carbon 172 (2021) 1-14. |
| [29] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
| [30] |
Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong, J.W. Gu, Compos. Sci. Technol. 183 (2019) 107833.
DOI URL |
| [31] |
Y. Yuan, Y. Ding, C. Wang, F. Xu, Z. Lin, Y. Qin, Y. Li, M. Yang, X. He, Q. Peng, Y. Li, ACS Appl. Mater. Interfaces 8 (2016) 16852-16861.
DOI URL |
| [32] | Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Carbon 139 (2018) 271-278. |
| [33] | B. Zhao, P. Bai, S. Wang, H. Ji, B. Fan, R. Zhang, R. Che, ACS Appl. Mater. Inter-faces 13 (2021) 29101-29112. |
| [34] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
| [35] |
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J.W. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
| [36] |
P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, J.W. Gu, Compos. Sci. Technol. 181 (2019) 107698.
DOI URL |
| [37] |
S. Zhu, Q. Cheng, C. Yu, X. Pan, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Compos. Sci. Technol. 189 (2020) 108012.
DOI URL |
| [38] |
K. Manna, S.K. Srivastava, ACS Sustain. Chem. Eng. 5 (2017) 10710-10721.
DOI URL |
| [39] |
Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, ACS Appl. Mater. Interfaces 12 (2020) 22088-22098.
DOI URL |
| [40] |
J.Q. Ling, W.T. Zhai, W.W. Feng, B. Shen, J.F. Zhang, W.G. Zheng, ACS Appl. Mater. Interfaces 5 (2013) 2677-2684.
DOI URL |
| [41] | Q. Yan, H.B. Zhang, W.G. Zheng, Z.Z. Yu, Z.X. He, Interfaces 3 (2011) 918-924. |
| [42] |
Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Adv. Mater. 25 (2013) 1296-1300.
DOI URL |
| [43] |
D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, J. Mater. Chem. 22 (2012) 18772-18774.
DOI URL |
| [44] | Y.Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, A. C.S. Sustain, Chem. Eng. 3 (2015) 1419-1427. |
| [45] |
L.Y. Zhang, M. Liu, S. Roy, E. Chu, K. See, X. Hu, ACS Appl. Mater. Interfaces 8 (2016) 7422-7430.
DOI URL |
| [46] |
Y. Li, B. Xue, S. Yang, Z. Cheng, L. Xie, Q. Zheng, Chem. Eng. J. 410 (2021) 128356.
DOI URL |
| [47] |
Y. Liu, M. Lu, K. Wu, S. Yao, X. Du, G. Chen, Q. Zhang, L. Liang, M. Lu, Compos. Sci. Technol. 174 (2019) 1-10.
DOI URL |
| [48] |
B. Shin, S. Mondal, M. Lee, S. Kim, Y.-.I. Huh, C. Nah, Chem. Eng. J. 418 (2021) 129282.
DOI URL |
| [49] |
X. Lu, J. Huang, B. Kang, T. Yuan, J.P. Qu, Sol. Energy Mater. Sol. Cells 192 (2019) 170-178.
DOI URL |
| [50] |
X.M. Zhou, J. Appl. Polym. Sci 113 (2009) 2041-2045.
DOI URL |
| [51] |
Y. Li, S. Wang, H. Liu, F. Meng, H. Ma, W. Zheng, Sol. Energy Mater. Sol. Cell. 127 (2014) 92-97.
DOI URL |
| [52] | Ö. Gök, C. Alkan, Y. Konuklu, Sol. Energy Mater. Sol. Cell. 191 (2019) 345-349. |
| [53] |
S. Karaman, A. Karaipekli, A. Sarı, A. Biçer,, Sol. Energy Mater. Sol. Cell. 95 (2011) 1647-1653.
DOI URL |
| [54] |
D. Zhang, M. Chen, Q. Liu, J. Wan, J. Hu, Materials 11 (2018) 818.
DOI URL |
| [55] |
Y. Chen, Z. Cui, H. Ding, Y. Wan, Z. Tang, J. Gao, Int. J. Mol. Sci. 19 (2018) 3055.
DOI URL |
| [56] |
J. Xu, T. Yang, X. Xu, X. Guo, J. Cao, Compos. Part A: Appl. S. 139 (2020) 106098.
DOI URL |
| [57] | W. Chao, H. Yang, G. Cao, X. Sun, X. Wang, C. Wang, Energy 202 (2020) 117673. |
| [58] | X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu, P. Jiang, Y.-. W. Mai, Mater. Sci. Engi- R: Reports 142 (2020) 100577. |
| [59] |
X. Zhang, L. Wang, H. Tao, Y. Sun, H. Yang, B. Lin, Colloid Polym. Sci. 297 (2019) 1233-1243.
DOI URL |
| [1] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
| [2] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
| [3] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
| [4] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
| [5] | Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 246-259. |
| [6] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
| [7] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
| [8] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
| [9] | Xuan Hao, Xiaowei Yin, Litong Zhang, Laifei Cheng. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics [J]. J. Mater. Sci. Technol., 2013, 29(3): 249-254. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
