J. Mater. Sci. Technol. ›› 2023, Vol. 132: 144-153.DOI: 10.1016/j.jmst.2022.05.043
• Research Article • Previous Articles Next Articles
Weiqi Tanga,b, Kun Zhanga,b,*(
), Tianyu Chena,b, Qiu Wangb,c, Bingchen Weia,b,*(
)
Received:2022-03-10
Revised:2022-05-09
Accepted:2022-05-22
Published:2023-01-01
Online:2022-06-27
Contact:
Kun Zhang,Bingchen Wei
About author:weibc@imech.ac.cn (B. Wei).Weiqi Tang, Kun Zhang, Tianyu Chen, Qiu Wang, Bingchen Wei. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration[J]. J. Mater. Sci. Technol., 2023, 132: 144-153.
Fig. 4. (a) Selected area of the FIB-TEM sample and corresponding SAED patterns of the precipitates and the matrix; (b) TEM-EDS maps of the red region in (a) and the corresponding fast Fourier transform patterns of the BCC1 and HCP matrix.
Fig. 5. Compressive mechanical properties at various strain rates of the TiZrHfTa0.7W0.3 HEA: (a) engineering stress-strain compression curves; (b) yield strength (YS), ultimate strength (US), and fracture strain (FS); (c) corresponding strain hardening rates.
Fig. 6. High-speed photographs during Hopkinson bar impact tests ($\dot{\mathcal{\varepsilon}}$= 4200 s?1), where the sample failed at 50 μs, and metal combustion was observed along the fractured surface.
Fig. 7. (a) Remnant fracture surface at 4200 s?1. Red circles mark a large number of molten particles, and the two red lines (denoted as b and c) in the yellow region are for the EDS line scanning; (b, c) corresponding EDS line profiles for lines b and c in (a), respectively.
Fig. 9. High-speed video frames of the penetration process of TiZrHfTa0.7W0.3 HEA projectiles: (a) with optical filters and background light source, (b) without optical filters and background light source.
Fig. 10. (a) Cross-section of the target plate with YL10.2 alloys (left), HEA in this study (middle), and 18Ni stainless steel (right) cylindrical projectiles; (b) hole diameter vs. depth diagram, and the inset is the volume of penetration channel; (c) relationship of kinetic energy with P/L; (d) relationship of kinetic energy with D*/Dpro.
| [1] |
R. Ames, MRS Online Proceedings Library (OPL) 896 (2005). doi: 10.1557/PROC-0896-H03-08.
DOI URL |
| [2] |
M. Wang, J. Li, J. Zhang, X. Liu, Z. Mao, Z. Weng, H. Wang, J. Tao, J. Mater. Eng. Perform. 29 (2020) 506-514.
DOI URL |
| [3] |
X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, Z.W. Guan, J. Appl. Phys. 113 (2013) 083508.
DOI URL |
| [4] |
Q. Zhou, Q. Hu, B. Wang, B. Zhou, P. Chen, R. Liu, J. Alloy. Compd. 832 (2020) 154894.
DOI URL |
| [5] |
D.L. Hastings, E.L. Dreizin, Adv. Eng. Mater. 20 (2018) 1700631.
DOI URL |
| [6] | S. Seropyan, I. Saikov, D. Andreev, G. Saikova, M. Alymov, Metals 11 (2021) 949. |
| [7] |
C. Ji, Y. He, C.T. Wang, Y. He, Z. Guo, L. Guo, J. Non-Cryst. Solids 515 (2019) 149-156.
DOI URL |
| [8] |
L. Wang, J. Liu, S. Li, X. Zhang, AIP Adv. 5 (2015) 117142.
DOI URL |
| [9] |
Z. Zhang, H. Zhang, Y. Tang, L. Zhu, Y. Ye, S. Li, S. Bai, Mater. Des. 133 (2017) 435-443.
DOI URL |
| [10] |
H. Ren, X. Liu, J. Ning, AIP Adv. 6 (2016) 115205.
DOI URL |
| [11] |
H. Ren, X. Liu, J. Ning, Mater. Sci. Eng. A 660 (2016) 205-212.
DOI URL |
| [12] |
A. Coverdill, C. Delaney, A. Jennrich, H. Krier, N.G. Glumac, J. Energ. Mater. 32 (2014) 135-145.
DOI URL |
| [13] |
P. Luo, Z. Wang, C. Jiang, L. Mao, Q. Li, Mater. Des. 84 (2015) 72-78.
DOI URL |
| [14] | L. Wang, J. Jiang, M. Li, J. Men, S. Wang, Def. Technol. 17 (2021) 467-477. |
| [15] |
L. Xing, X. Liu, Z. Cao, C. He, J. Liu, Mater. Sci. Eng. A 831 (2022) 142196.
DOI URL |
| [16] |
B.B. Aydelotte, N.N. Thadhani, Mater. Sci. Eng. A 570 (2013) 164-171.
DOI URL |
| [17] |
R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L. Zhu, X. Liu, S. Bai, J. Alloy. Compd. 825 (2020) 154099.
DOI URL |
| [18] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
| [19] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI URL |
| [20] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
| [21] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
| [22] |
M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
| [23] |
B. Cantor, Prog. Mater. Sci. 120 (2021) 100754.
DOI URL |
| [24] |
W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
| [25] | Y. Darhovsky, M. Mellincovsky, D. Baimel, A. Kuperman, Energy 231 (2021) 120789. |
| [26] |
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47 (2012) 4062-4074.
DOI URL |
| [27] |
O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Metall. Mater. Trans. A 49 (2018) 2876-2892.
DOI URL |
| [28] |
O.N. Senkov, S.L. Semiatin, J. Alloy. Compd. 649 (2015) 1110-1123.
DOI URL |
| [29] |
V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Sci. Rep. 8 (2018) 8816.
DOI URL PMID |
| [30] |
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017) 1701678.
DOI URL |
| [31] |
X. Fan, R. Li, X. Liu, Q. Liu, X. Tong, A. Li, S. Xu, H. Yang, P. Yu, G. Li, Mater. Sci. Eng. A 832 (2022) 142492.
DOI URL |
| [32] |
X.S. Liu, R. Li, Y. Lu, Y.F. Zhang, P.F. Yu, G. Li, Mater. Sci. Eng. A 822 (2021) 141674.
DOI URL |
| [33] |
S. Huang, W. Li, E. Holmström, L. Vitos, Sci. Rep. 8 (2018) 12576.
DOI URL PMID |
| [34] |
M. Wang, M.X. Huang, Acta Mater. 188 (2020) 551-559.
DOI URL |
| [35] | M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994. |
| [36] |
G.Z. Voyiadjis, F.H. Abed, Mech. Mater. 37 (2005) 355-378.
DOI URL |
| [37] |
G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J.-P. Couzinié, L. Perrière, J. Gubicza, I. Guillot, Mater. Charact. 111 (2016) 106-113.
DOI URL |
| [38] | S. Zhang, Z. Wang, H.J. Yang, J.W. Qiao, Z.H. Wang, Y.C. Wu, Intermetallics 121 (2020) 106699. |
| [39] |
B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Acta Mater. 142 (2018) 201-212.
DOI URL |
| [40] |
Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Acta Mater. 151 (2018) 424-431.
DOI URL |
| [41] |
P.G. Klemens, R.K. Williams, Int. Met. Rev. 31 (1986) 197-215.
DOI URL |
| [42] | J.E. Field, Acc. Chem. Res. 25 (1992) 489-496. |
| [43] | P. Kofstad, J. Common Met. 12 (1967) 449-464. |
| [44] |
S. Sawada, J. Phys. Soc. Jpn. 11 (1956) 1237-1246.
DOI URL |
| [45] | J. Berkowitz, W.A. Chupka, M.G. Inghram, J. Chem. Phys. 27 (1957) 85-86. |
| [46] | O.G. Cervantes, J.D. Kuntz, A.E. Gash, Z.A. Munir, Combust. Flame 157 (2010) 2326-2332. |
| [47] |
I.V. Roisman, K. Weber, A.L. Yarin, V. Hohler, M.B. Rubin, Int. J. Impact Eng. 22 (1999) 707-726.
DOI URL |
| [48] |
R.L. Woodward, Int. J. Impact Eng. 18 (1996) 369-381.
DOI URL |
| [49] | C.E.A., Int. J. Impact Eng. 108 (2017) 3-26. |
| [50] | Z. Rosenberg, E. Marmor, M. Mayseless, Int. J. Impact Eng. 10 (1990) 483-486. |
| [51] |
L.S. Magness, Mech. Mater. 17 (1994) 147-154.
DOI URL |
| [52] |
A. Tate, J. Mech. Phys. Solids 17 (1969) 141-150.
DOI URL |
| [53] |
D.R. Christman, J.W. Gehring, J. Appl. Phys. 37 (1966) 1579-1587.
DOI URL |
| [54] |
X.F. Liu, Z.L. Tian, X.F. Zhang, H.H. Chen, T.W. Liu, Y. Chen, Y.-J. Wang, L.-H. Dai, Acta Mater. 186 (2020) 257-266.
DOI URL |
| [55] |
H. Chen, X. Zhang, L. Dai, C. Liu, W. Xiong, M. Tan, Def. Technol. (2021), doi: 10.1016/j.dt.2021.06.001.
DOI URL |
| [56] | G. Birkhoff, D.P. MacDougall, E.M. Pugh, S.G. Taylor, J. Appl. Phys. 19 (1948) 563-582. |
| [1] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [2] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
| [3] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
| [4] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
| [5] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
| [6] | Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 1-13. |
| [7] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
| [8] | Kai Chen, Qunbo Fan, Jiahao Yao, Lin Yang, Shun Xu, Wei Lei, Duoduo Wang, Jingjiu Yuan, Haichao Gong, Xingwang Cheng. Composition design of a novel Ti-6Mo-3.5Cr-1Zr alloy with high-strength and ultrahigh-ductility [J]. J. Mater. Sci. Technol., 2022, 131(0): 276-286. |
| [9] | Ting Zhang, Daixiu Wei, Eryi Lu, Wen Wang, Kuaishe Wang, Xiaoqing Li, Lai-Chang Zhang, Hidemi Kato, Weijie Lu, Liqiang Wang. Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance [J]. J. Mater. Sci. Technol., 2022, 131(0): 68-81. |
| [10] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
| [11] | Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure [J]. J. Mater. Sci. Technol., 2022, 126(0): 132-140. |
| [12] | Yiping Lu, Xiaoxiang Wu, Zhenghong Fu, Qiankun Yang, Yong Zhang, Qiming Liu, Tianxin Li, Yanzhong Tian, Hua Tan, Zhiming Li, Tongmin Wang, Tingju Li. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing [J]. J. Mater. Sci. Technol., 2022, 126(0): 15-21. |
| [13] | Xuli Liu, Yidong Wu, Yansong Wang, Jinbin Chen, Rui Bai, Lei Gao, Zhe Xu, William Yi Wang, Chengwen Tan, Xidong Hui. Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 127(0): 164-176. |
| [14] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [15] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
