J. Mater. Sci. Technol. ›› 2022, Vol. 126: 132-140.DOI: 10.1016/j.jmst.2022.02.048
Special Issue: Ti-based alloys 2022
• Research Article • Previous Articles Next Articles
Dongxu Lia, Guoying Zhangb, Gang Lua, Yujie Liua, Jianjun Wanga,c,*(), Chunming Liua,*(
)
Accepted:
2022-04-21
Published:
2022-11-01
Online:
2022-11-10
Contact:
Jianjun Wang,Chunming Liu
About author:
cmliu@mail.neu.edu.cn(C. Liu).Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure[J]. J. Mater. Sci. Technol., 2022, 126: 132-140.
Fig. 2. (a-d) Microstructures of Ti45Al8Nb alloy after 1, 12, 24, and 48 h of thermal exposure at 950 °C, (e) magnified EPMA image of precipitates and corresponding WDS mapping results.
Fig. 4. TEM morphologies of the alloy after thermal exposure for different times at 950 °C: (a, b) BF images of α2 lamellae after 12 h of thermal exposure, (c) BF image of precipitates after 24 h of thermal exposure, (d) dark-field (DF) image of precipitates after 48 h of thermal exposure, (e) SAED patterns of position E in Fig. (c), (f) SAED patterns of position F in Fig. (c), (g) Schematic diagram of SAED patterns in Fig. (e) and (f).
Number | Ti | Al | Nb |
---|---|---|---|
1 | 47.60 | 40.75 | 11.66 |
2 | 69.07 | 29.65 | 1.28 |
3 | 46.70 | 41.18 | 12.12 |
4 | 61.48 | 28.75 | 9.78 |
Table 1. Local chemical compositions (at.%) at different points in Fig. 5(b).
Number | Ti | Al | Nb |
---|---|---|---|
1 | 47.60 | 40.75 | 11.66 |
2 | 69.07 | 29.65 | 1.28 |
3 | 46.70 | 41.18 | 12.12 |
4 | 61.48 | 28.75 | 9.78 |
Fig. 6. (a) HRTEM image of Ti2Al shown in Fig. 4(c), (b) one-dimensional IFFT image of the selected area, (c) magnified HRTEM image of Fig. (a), (d) atom arrangement of (11$\bar{2}$0)Ti2Al.
Phase | Lattice parameters (nm) | Structure type | Space group | |
---|---|---|---|---|
a | c | |||
α2-Ti3Al | 0.57 | 0.47 | D019 | P63/mmc (194) |
Ti2Al | 0.29 | 1.39 | D019 | P63/mmc (194) |
Table 2. Lattice parameters and crystal structures of α2-Ti3Al and Ti2Al.
Phase | Lattice parameters (nm) | Structure type | Space group | |
---|---|---|---|---|
a | c | |||
α2-Ti3Al | 0.57 | 0.47 | D019 | P63/mmc (194) |
Ti2Al | 0.29 | 1.39 | D019 | P63/mmc (194) |
Fig. 7. (a) HRTEM image of areas near decomposed α2 lamellae (FFT patterns of α2 and Ti2Al are displayed in the inset), (b) one-dimensional IFFT image showing the distribution of dislocations (marked by red ┴ symbols) and SFs (marked by yellow arrows), (c) magnified HRTEM image of the rectangular area in (a).
[1] | G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Nat. Mater., 15 (8) (2016), pp. 876-881. |
[2] | G. Ren, C. Dai, W. Mei, J. Sun, S. Lu, L. Vitos, Acta Mater., 165 (2019), pp. 215-227. |
[3] | J.P. Lin, X.J. Xu, Y.L. Wang, S.F. He, Y. Zhang, X.P. Song, G.L. Chen, Intermetallics, 15 (5) (2007), pp. 668-674. |
[4] | B.P. Bewlay, M. Weimer, T. Kelly, A. Suzuki, P.R. Subramanian, MRS Online Proc. Libr., 1516 (1) (2013), pp. 49-58. |
[5] | Z.W. Huang, T. Cong, Intermetallics, 18 (1) (2010), pp. 161-172. |
[6] | H.Z. Niu, X.J. Chen, Y.F. Chen, S. Zhao, G.H. Liu, D.L. Zhang, Mater.Sci. Eng. A, 784 (2020), Article 139313. |
[7] | W. Zhao, Y. Pei, D. Zhang, Y. Ma, S. Gong, H. Xu, Intermetallics, 19 (3) (2011), pp. 429-432. |
[8] | Z.W. Huang, J.P. Lin, H.L. Sun, Intermetallics, 85 (2017), pp. 59-68. |
[9] | R.V. Ramanujan, P.J. Maziasz, C.T. Liu, Acta Mater., 44 (7) (1996), pp. 2611-2642. |
[10] | Z.W. Huang, W. Voice, P. Bowen, Scr. Mater., 48 (1) (2003), pp. 79-84. |
[11] | Z.W. Huang, D.G. Zhu, Intermetallics, 16 (2) (2008), pp. 156-167. |
[12] | R. Yu, L.L. He, Z.Y. Cheng, J. Zhu, H.Q. Ye, Intermetallics, 10 (7) (2002), pp. 661-665. |
[13] | Z.W. Huang, W.E. Voice, P. Bowen, Mater.Sci. Eng. A, 329-331 (2002), pp. 435-445. |
[14] | X. Wang, J. Yang, L. Song, H. Kou, J. Li, H. Fu, Intermetallics, 82 (2017), pp. 32-39. |
[15] | M. Beschliesser, H. Clemens, H. Kestler, F. Jeglitsch, Scr. Mater., 49 (4) (2003), pp. 279-284. |
[16] | L. Song, J. Lin, J. Li, J. Alloy. Compd., 691 (2017), pp. 60-66. |
[17] | L.Z. Zhou, V. Lupinc, J.T. Guo, Mater.Sci. Eng. A, 354 (1) (2003), pp. 97-105. |
[18] | A. Loiseau, A. Lasalmonie, Acta Crystallogr. Sect. B, 39 (5) (1983), pp. 580-587. |
[19] | A. Loiseau, A. Lasalmonie, Mater.Sci. Eng., 67 (2) (1984), pp. 163-168. |
[20] | L.L. He, H.Q. Ye, R.G. Xu, D.Z. Yang, Mater. Lett., 19 (1) (1994), pp. 17-21. |
[21] | A. Menand, H. Zapolsky-Tatarenko, Mater.Sci. Eng. A, 250 (1) (1998), pp. 55-64. |
[22] | G. Sharma, R.V. Ramanujan, G.P. Tiwari, Mater.Sci. Eng. A, 269 (1) (1999), pp. 21-25. |
[23] | S.J. Yang, S.W. Nam, Mater.Sci. Eng. A, 329-331 (2002), pp. 898-905. |
[24] | G.H. Cao, W. Skrotzki, T. Gemming, J. Alloy. Compd., 417 (1) (2006), pp. 169-172. |
[25] | G.H. Cao, A.M. Russell, C.G. Oertel, W. Skrotzki, Acta Mater., 98 (2015), pp. 103-112. |
[26] | G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang, J.P. Lin, Intermetallics, 15 (5) (2007), pp. 625-631. |
[27] | F. Yuan, F. Han, Y. Zhang, A. Muhammad, W. Guo, J. Ren, C. Liu, H. Gu, G. Li, G. Yuan, J. Mater. Sci. Technol., 98 (2022), pp. 44-50. |
[28] | D.X. Li, G.Y. Zhang, G. Lu, J.J. Wang, C.M. Liu, Corros. Sci., 177 (2020), Article 108971. |
[29] | M. Beschliesser, A. Chatterjee, A. Lorich, W. Knabl, H. Kestler, G. Dehm, H. Clemens, Mater.Sci. Eng. A, 329-331 (2002), pp. 124-129. |
[30] | D. Hu, A.B. Godfrey, M.H. Loretto, Intermetallics, 6 (5) (1998), pp. 413-417. |
[31] | V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, T.Y. Velikanova, J. Alloy. Compd., 465 (1) (2008), pp. 64-77. |
[32] | X. Liu, L. Song, A. Stark, U. Lorenz, Z. He, J. Lin, F. Pyczak, T. Zhang, J. Mater. Sci. Technol., 102 (2022), pp. 89-96. |
[33] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190. |
[34] | Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloy., 9 (6) (2021), pp. 1922-1941. |
[35] | Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (4) (2016), pp. 2404-2415. |
[36] | Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater., 29 (1) (2022), pp. 32-48. |
[37] | P. Tian, G. Yang, Z. Ge, Y. Wang, L. Cheng, Y. Liu, H. Kou, Adv. Eng. Mater., 21 (8)(2019), Article 1900239. |
[38] | C.L. Chen, W. Lu, Y.Y. Cui, L.L. He, H.Q. Ye, Intermetallics, 15 (5) (2007), pp. 722-726. |
[39] | F. Qiang, H. Kou, L. Wang, J. Li, Mater. Charact., 167 (2020), Article 110474. |
[40] | C. Dai, Z. Yang, J. Sun, S. Lu, L. Vitos, Acta Mater., 221 (2021), Article 117419. |
[41] | H.S. Park, S.W. Nam, N.J. Kim, S.K. Hwang, Scr. Mater., 41 (11) (1999), pp. 1197-1203. |
[42] | H. Wu, G. Fan, L. Geng, X. Cui, M. Huang, Scr. Mater., 125 (2016), pp. 34-38. |
[43] | C.Q. Liu, C. He, H.W. Chen, J.F. Nie, J. Mater. Sci. Technol., 45 (2020), pp. 230-240. |
[1] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
[2] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
[3] | Weiqi Tang, Kun Zhang, Tianyu Chen, Qiu Wang, Bingchen Wei. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration [J]. J. Mater. Sci. Technol., 2023, 132(0): 144-153. |
[4] | Jin Liu, Zhiyong Du, Jinlong Su, Jie Tang, Fulin Jiang, Dingfa Fu, Jie Teng, Hui Zhang. Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy [J]. J. Mater. Sci. Technol., 2023, 132(0): 154-165. |
[5] | Wenbin Guo, Fuzhou Han, Geping Li, Yingdong Zhang, Muhammad Ali, Jie Ren, Qichen Wang, Fusen Yuan. Atomic scale investigation of FCC → HCP reverse phase transformation in face-centered cubic zirconium [J]. J. Mater. Sci. Technol., 2023, 137(0): 8-13. |
[6] | Xingpu Zhang, Zhongkang Han, Liangliang Xu, Haohan Ni, Xiaojuan Hu, Haofei Zhou, Yu Zou, Jiangwei Wang. Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys [J]. J. Mater. Sci. Technol., 2023, 138(0): 157-170. |
[7] | Wei Xiong, Amy X.Y. Guo, Shuai Zhan, Chain-Tsuan Liu, Shan Cecilia Cao. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142(0): 196-215. |
[8] | Jing-Yu Xu, Cheng Zhang, Li-Xue Liu, Rong Guo, Ming-Jun Sun, Lin Liu. Achieving high strength in laser powder-bed fusion processed AlFeCuZr alloy via dual-nanoprecipitations and grain boundary segregation [J]. J. Mater. Sci. Technol., 2023, 137(0): 56-66. |
[9] | Tianwei Liu, Lunwei Liang, Dierk Raabe, Lanhong Dai. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134(0): 244-253. |
[10] | X.S. Liu, R. Li, X.F. Fan, Q.Q. Liu, X. Tong, A.X. Li, S. Xu, H. Yang, S.B. Yu, M.H. Jiang, C. Huo, P.F. Yu, M.T. Dove, G. Li. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening [J]. J. Mater. Sci. Technol., 2023, 134(0): 60-66. |
[11] | Q.Z. Wang, N. Kang, X. Lin, M. EL Mansori, W.D. Huang. High strength Al-Cu-Mg based alloy with synchronous improved tensile properties and hot-cracking resistance suitable for laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 141(0): 155-170. |
[12] | Bailing An, Rongmei Niu, Yan Xin, William L. Starch, Zhaolong Xiang, Yifeng Su, Robert E. Goddard, Jun Lu, Theo M. Siegrist, Engang Wang, Ke Han. Suppression of discontinuous precipitation and strength improvement by Sc doping in Cu-6 wt%Ag alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 80-96. |
[13] | Mujin Yang, Chao Huang, Jiajia Han, Haichen Wu, Yilu Zhao, Tao Yang, Shenbao Jin, Chenglei Wang, Zhou Li, Ruiying Shu, Cuiping Wang, Huanming Lu, Gang Sha, Xingjun Liu. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase [J]. J. Mater. Sci. Technol., 2023, 136(0): 180-199. |
[14] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[15] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||