J. Mater. Sci. Technol. ›› 2022, Vol. 126: 141-151.DOI: 10.1016/j.jmst.2022.03.016
Special Issue: Electronic materials 2022; Polymers 2022
• Research Article • Previous Articles Next Articles
Jia Zhaoa,*(), Ying Weia, Yi Zhangb,*(
), Qingguo Zhanga,*(
)
Accepted:
2022-04-22
Published:
2022-11-01
Online:
2022-11-10
Contact:
Jia Zhao,Yi Zhang,Qingguo Zhang
About author:
zhangqingguo@bhu.edu.cn (Q. Zhang).Jia Zhao, Ying Wei, Yi Zhang, Qingguo Zhang. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 126: 141-151.
Fig. 3. TEM images of as-synthesized CuS (a), PANI (b) and CuS@PANI (c, c'); HRTEM images of as-synthesized CuS (a') and CuS@PANI (c''); STEM-HAADF (d) and EDS element mapping (d'-d''') images of as-synthesized CuS@PANI.
Fig. 5. XPS spectra (a) of as-synthesized PANI, CuS and CuS@PANI; Cu 2p (a'), C 1 s (a'') and N 1 s (a''') high resolution XPS spectra of as-synthesized CuS@PANI.
Fig. 6. Electrical conductivity (a), complex permeability (b), real permittivity (c), imaginary permittivity (d), dielectric loss tangent (e) and average value of complex permittivity (f) for CuS@PANI/silicone rubber EM wave absorption composites.
Fig. 8. RL values (a), attenuation constant (b) and impendence comparison (c) of CuS@PANI/silicone rubber EM wave absorption composites with a thickness of 2.65 mm.
Absorber | Matrix | RLmin (dB) | EAB (GHz) | MatchingThickness (mm) | Frequency (GHz) | Refs. |
---|---|---|---|---|---|---|
45 wt.% γ-Fe2O3/RGO | Paraffin | −59.65 | 3.0 | 2.5 | 8.2-12.4 | [ |
30 wt.% C-SnO2−MWCNT | Silicone rubber | −53.5 | 3.16 | 2.65 | 8.2-12.4 | [ |
50 wt.% GS-ZnO | Paraffin | −45.05 | 3.3 | 2.2 | 8.2-12.4 | [ |
5 wt.% CNT-RGO | Silicone resin | −55.0 | 3.5 | 2.75 | 8.2-12.4 | [ |
7.5 wt.% SnO2@MWCNT | Silicone rubber | −56.9 | 3.1 | 2.0 | 8.2-12.4 | [ |
60 wt.% Ti3SiC2@Cu | Epoxy | −37.0 | 2.8 | 1.8 | 8.2-12.4 | [ |
25 wt.% CuS@PANI | Silicone rubber | −71.1 | 3.4 | 2.75 | 8.2-12.4 | This work |
Table 1. EM wave absorption properties of different composites in X-band.
Absorber | Matrix | RLmin (dB) | EAB (GHz) | MatchingThickness (mm) | Frequency (GHz) | Refs. |
---|---|---|---|---|---|---|
45 wt.% γ-Fe2O3/RGO | Paraffin | −59.65 | 3.0 | 2.5 | 8.2-12.4 | [ |
30 wt.% C-SnO2−MWCNT | Silicone rubber | −53.5 | 3.16 | 2.65 | 8.2-12.4 | [ |
50 wt.% GS-ZnO | Paraffin | −45.05 | 3.3 | 2.2 | 8.2-12.4 | [ |
5 wt.% CNT-RGO | Silicone resin | −55.0 | 3.5 | 2.75 | 8.2-12.4 | [ |
7.5 wt.% SnO2@MWCNT | Silicone rubber | −56.9 | 3.1 | 2.0 | 8.2-12.4 | [ |
60 wt.% Ti3SiC2@Cu | Epoxy | −37.0 | 2.8 | 1.8 | 8.2-12.4 | [ |
25 wt.% CuS@PANI | Silicone rubber | −71.1 | 3.4 | 2.75 | 8.2-12.4 | This work |
Fig. 9. 3D RL (a), RL values (b), minimum RL (c) and EAB (d) of 25 wt.% CuS@PANI/silicone rubber EM wave absorption composite with different thicknesses.
[1] | T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol., 68 (2021), pp. 61-69. |
[2] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed., 61 (2022), Article e202200705. |
[3] | ( Z. Lou, Q. Wang, X. Zhou, U. Kara, R. Mamtani, H. Lv, M. Zhang, Z. Yang, Z. Yang, Y. Li, C. Wang, S. Adera, X. Wang, J. Mater. Sci. Technol., 113 (2022), pp. 33-39. |
[4] | P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang, J. Luo, Compos. Part B-Eng., 202 (2020), Article 108406. |
[5] | ( a) Y. Han, K. Ruan, J. Gu, Nano Res, 15 (2022), pp. 4747-4755. |
[6] | ( a) H. Zhang, C. Shi, Z. Jia, X. Liu, B. Xu, D. Zhang, G. Wu, J. Colloid. Interf. Sci., 584 (2021), pp. 382-394. |
[7] | B. Wen, X. Wang, W. Cao, H. Shi, M. Lu, G. Wang, H. Jin, W. Wang, J. Yuan, M. Cao, Nanocsale, 6 (2014), pp. 5754-5761. |
[8] | Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao, P. Liu, J. Kong, J. Mater. Sci. Technol., 114 (2022), pp. 206-214. |
[9] | X. Cui, X. Liang, W. Liu, W. Gu, G. Ji, Y. Du, Chem. Eng. J., 381 (2020), Article 122589. |
[10] | T. Ma, H. Ma, K. Ruan, X. Shi, H. Qiu, S. Gao, J. Gu, Chinese J. Polym. Sci., 40 (2022), pp. 248-255. |
[11] | J. Lv, W. Gu, X. Cui, S. Dai, B. Zhang, G. Ji, Sci. Rep., 9 (2019), p. 4271. |
[12] | A. Wang, W. Wang, C. Long, W. Li, J. Guan, H. Gu, G. Xu, J. Mater. Chem. C, 2 (2014), pp. 3769-3776. |
[13] | P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, Nano-Micro Lett, 14 (2022), p. 51. |
[14] | G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan, W. Li, J. Alloy. Compd., 509 (2011), pp. 4320-4326. |
[15] | M. Xu, L. Wei, L. Ma, J. Lu, T. Liu, L. Zhang, L. Zhao, C. Park, J. Mater. Sci. Technol., 117 (2022), pp. 215-224. |
[16] | L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L. Zhang, J. Phys. Chem. C, 117 (2013), pp. 19701-19711. |
[17] | J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen, G. Nie, X. Liu, P. Liu, Nano-Micro Lett, 13 (2021), pp. 1-15. |
[18] | J. Zhao, Y. Lu, W. Ye, L. Wang, B. Liu, S. Lv, L. Chen, J. Gu, Ceram. Int., 45 (2019), pp. 20282-20289. |
[19] | S. Yang, X. Guo, P. Chen, D. Xu, H. Qiu, X. Zhu, J. Alloy. Compd., 797 (2019), pp. 1310-1319. |
[20] | W. Wei, X. Liu, W. Lu, H. Zhang, J. He, H. Wang, Y. Hou, ACS Appl. Mater. Interfaces, 11 (2019), pp. 12752-12760. |
[21] | G. Zhu, Y. Liu, Z. Xu, T. Jiang, C. Zhang, X. Li, G. Qi, Chem Phys Chem, 11 (2010), pp. 2432-2437. |
[22] | R. Zhuo, H. Feng. J. Chen, D. Yan, J. Feng, H. Li, B. Geng, S. Cheng, X. Xu, P. Yan, J. Phys. Chem. C, 112 (2008), pp. 11767-11775. |
[23] | L. Kong, C. Wang, X. Yin, X. Fan, W. Wang, J. Huang, J. Mater. Chem. C, 5 (2017), pp. 7479-7488. |
[24] | L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, ACS Appl. Mater. Interfaces, 10 (2018), pp. 22602-22610. |
[25] | Y. Zhang, S. Gao, H. Xing, J. Alloy. Compd., 777 (2019), pp. 544-553. |
[26] | X. Fan, R. Yuan, X. Li, H. Xu, L. Kong, G. Wu, L. Zhang, L. Cheng, Ceram. Int., 46 (2020), pp. 14985-14993. |
[27] | F. Wu, Y. Xia, Y. Wang, M. Wang, J. Mater. Chem. A, 2 (2014), pp. 20307-20315. |
[28] | X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, Nanoscale, 6 (2014), pp. 8140-8148. |
[29] | M. Han, X. Yin, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces, 9 (2017), pp. 11803-11810. |
[30] | M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, J. Mater. Chem. A, 2 (2014), pp. 16403-16409. |
[31] | L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zhang, Carbon N Y, 73 (2014), pp. 185-193. |
[32] | J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Compos. Commun., 22 (2020), Article 100486. |
[33] | Y. Wang, Y. Du, P. Xu, R. Qiang, X. Han, Polymers (Basel), 9 (2017), p. 29. |
[34] | Q. Yang, Y. Shi, Y. Fang, Y. Dong, Q. Ni, Y. Zhu, Y. Fu, Compos. Sci. Technol., 174 (2019), pp. 176-183. |
[35] | Y. Wang, X. Gao, W. Zhang, C. Luo, L. Zhang, P. Xue, J. Alloy. Compd., 757 (2018), pp. 372-381. |
[36] | P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, ACS Appl. Mater. Interfaces, 8 (2019), pp. 5536-5546. |
[37] | B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, J. Mater. Chem. A, 3 (2015), pp. 10345-10352. |
[38] | S. Li, A. Liu, Z. Yang, L. Zhao, J. Wang, F. Liu, R. You, J. He, X. Yan, P. Sun, X. Liang, G. Lu, Sensor. Actuat. B-Chem., 289 (2019), pp. 252-259. |
[39] | K. Manna, S. Srivastava, A.C.S. Sustain, Chem. Eng., 5 (2017), pp. 10710-10721. |
[40] | K. Ghosh, C. Yue, M. Sk, R. Jena, ACS Appl. Mater. Interfaces, 9 (2017), pp. 15350-15363. |
[41] | L. Givalou, M. Antoniadou, D. Perganti, M. Giannouri, C. Karagianni, A. Kontos, P. Falarasa, Electrochim. Acta, 210 (2016), pp. 630-638. |
[42] | S. Li, Y. Diao, Z. Yang, J. He, J. Wang, C. Liu, F. Liu, H. Lu, X. Yan, P. Sun, G. Lu, Sensor. Actuat. B-Chem., 276 (2018), pp. 526-533. |
[43] | W. Fu, W. Han, H. Zha, J. Mei, Y. Li, Z. Zhang, E. Xie, Phy. Chem. Chem. Phys., 18 (2016), pp. 24471-24476. |
[44] | T. Wei, Y. Liu, W. Dong, Y. Zhang, C. Huang, Y. Sun, X. Chen, N. Dai, ACS Appl. Mater. Interfaces, 5 (2013), pp. 10473-10477. |
[45] | Y. Huangfu, K. Ruan, H. Qiu, Y. Lu, C. Liang, J. Kong, J. Gu, Compos. Part A-Appl., 121 (2019), pp. 265-272. |
[46] | J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Compos. Part A-Appl., 99 (2017), pp. 121-128. |
[47] | L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat., 1 (2021), pp. 413-431. |
[48] | X. Liu, X. Cui, Y. Chen, X. Zhang, R. Yu, G. Wang, H. Ma, Carbon N Y, 95 (2015), pp. 870-878. |
[49] | W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Carbon N Y, 108 (2016), pp. 52-60. |
[50] | L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Carbon N Y, 141 (2019), pp. 506-514. |
[51] | L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang, L. Cheng, J. Phys. Chem. C, 117 (2013), pp. 2135-2146. |
[52] | Y. Liu, X. Jian, X. Su, F. Luo, J. Xu, J. Wang, X. He, Y. Qu, J. Alloy. Compd., 740 (2018), pp. 68-76. |
[1] | Xiubo Xie, Yukun Wang, Xueqin Sun, Heshan Wang, Ronghai Yu, Wei Du, Hongjing Wu. Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2023, 133(0): 1-11. |
[2] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[3] | Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum [J]. J. Mater. Sci. Technol., 2022, 130(0): 249-255. |
[4] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[5] | Meng Zhu, Yuting Lei, Heng Wu, Luo Kong, Hailong Xu, Xuanxuan Yan, Yongjian Xu, Lei Dai. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials [J]. J. Mater. Sci. Technol., 2022, 129(0): 215-222. |
[6] | Lei Wang, Mengqiu Huang, Xuefeng Yu, Wenbin You, Biao Zhao, Chongyun Liang, Xianhu Liu, Xuefeng Zhang, Renchao Che. Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 131(0): 231-239. |
[7] | Xiaodi Zhou, He Han, Yuchao Wang, Cheng Zhang, Hualiang Lv, Zhichao Lou. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 121(0): 199-206. |
[8] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[9] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[10] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[11] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[12] | Yan Song, Ziyu Liu, Xicheng Zhang, Runqiu Zhu, Youwei Zhang, Pinggui Liu, Lihua He, Jie Kong. Single source precursor derived SiBCNHf ceramic with enhanced high‐temperature microwave absorption and antioxidation [J]. J. Mater. Sci. Technol., 2022, 126(0): 215-227. |
[13] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[14] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[15] | Yulong Qiao, Weili Li, Yulei Zhang, Lu Jing, Chang Gao, Wenping Cao, Dan Xu, Weidong Fei. Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency [J]. J. Mater. Sci. Technol., 2020, 44(0): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||