J. Mater. Sci. Technol. ›› 2023, Vol. 132: 154-165.DOI: 10.1016/j.jmst.2022.06.010
• Research Article • Previous Articles Next Articles
Jin Liu, Zhiyong Du, Jinlong Su, Jie Tang(), Fulin Jiang(
), Dingfa Fu, Jie Teng, Hui Zhang(
)
Received:
2022-04-15
Revised:
2022-06-03
Accepted:
2022-06-04
Published:
2023-01-01
Online:
2022-07-03
Contact:
Jie Tang,Fulin Jiang,Hui Zhang
About author:
zhanghui63hunu@163.com (H. Zhang).Jin Liu, Zhiyong Du, Jinlong Su, Jie Tang, Fulin Jiang, Dingfa Fu, Jie Teng, Hui Zhang. Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy[J]. J. Mater. Sci. Technol., 2023, 132: 154-165.
Fig. 6. The simulation result for residual stress in the sample after wire cutting from the UCQ specimen. The size of the cut sample is 8 mm × 8 mm × 40 mm.
Fig. 7. Vickers hardness distribution at different locations of the directly aged samples (AA-D): (a) location 1; (b) location 2; (c) location 3; (d) location 4. The AA treatments (120 °C / 24 h) are directly implemented for specimens with a length and width of 160 mm and 80 mm after various quenching processes, as shown in Fig. 1.
Fig. 10. TEM BF images and corresponding SAED patterns on the surface and centre of UCD-AA-D1 and UCD-AA-C1 samples (along the <110>Al axis): (a-c) UCQ-AA-D1-S; (d-f) UCQ-AA-C1-S; (g-i) UCQ-AA-D1-C; (j-l) UCQ-AA-C1-C.
Fig. 11. The precipitate radius distribution under different conditions corresponding to Fig. 9: (a) UCQ-AA-D1-S; (b) UCQ-AA-C1-S; (c) UCQ-AA-D1-C; (d) UCQ-AA-C1-C.
Fig. 12. Quenching cooling curves on the top surface centre (TSC) and body centre (BC) of various samples and the gap in temperature (ΔT) between these two points.
Fig. 15. (a) The in situ electrical resistivity (Δρ) and (b) corresponding derivative evolution for the CQ1-0 and CQ1-T120 samples; (c-f) STEM-HAADF images and corresponding precipitate radius distributions for the CQ1-0 and CQ1-T120 samples at 10800 s and 86400 s (along the <110> Al axis).
[1] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
[2] |
J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775-5799.
DOI URL |
[3] |
X.S. Zhang, Y.J. Chen, J.L. Hu, Prog. Aerosp. Sci. 97 (2018) 22-34.
DOI URL |
[4] |
A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloys Compd. 781 (2019) 945-983.
DOI URL |
[5] |
J. Tang, M. Liu, G. Bo, F. Jiang, C. Luo, J. Teng, D. Fu, H. Zhang, J. Mater. Sci. Technol. 116 (2022) 130-150.
DOI URL |
[6] |
Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, L. Cao, J. Mater. Sci. Technol. 85 (2021) 106-117.
DOI URL |
[7] |
D.A. Tanner, J.S. Robinson, Mater. Des. 29 (2008) 1489-1496.
DOI URL |
[8] |
J.S. Robinson, S. Hossain, C.E. Truman, A.M. Paradowska, D.J. Hughes, R.C. Wimpory, M.E. Fox, Mater. Sci. Eng. A 527 (2010) 2603-2612.
DOI URL |
[9] |
Y.S. Sun, F.L. Jiang, H. Zhang, J. Su, W.H. Yuan, Mater. Des. 92 (2016) 281-287.
DOI URL |
[10] |
J.M. Drezet, A. Evans, T. Pirling, B. Pitié, Int. J. Cast Met. Res. 25 (2013) 110-116.
DOI URL |
[11] |
C. Liu, D. Liu, X. Zhang, D. Liu, A. Ma, N. Ao, X. Xu, J. Mater. Sci. Technol. 35 (2019) 1555-1562.
DOI URL |
[12] |
Y.L. Wang, H.C. Jiang, Z.M. Li, D.S. Yan, D. Zhang, L.J. Rong, J. Mater. Sci. Technol. 34 (2018) 1250-1257.
DOI URL |
[13] | A. Tabatabaeian, A. R. Ghasemi, M.M. Shokrieh, B. Marzbanrad, M. Baraheni, M. Fotouhi, Adv. Eng. Mater 24 (2022) 2100786. |
[14] |
J. Vaara, A. Kunnari, T. Frondelius, Eng. Fail. Anal. 110 (2020) 104379.
DOI URL |
[15] |
J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, X.L. Li, Mater. Sci. Eng. A 647 (2015) 7-14.
DOI URL |
[16] | A. Youtsos, in:Proceedings of a Special Symposium Held within the 16th Eu- ropean Conference of Fracture-ECF16, 2006. |
[17] |
W. Guo, M. Yang, Y. Zheng, X.S. Zhang, H. Li, X.Y. Wen, J.W. Zhang, Mater. Lett. 106 (2013) 14-17.
DOI URL |
[18] |
W. Guo, J. Guo, J. Wang, M. Yang, H. Li, X. Wen, J. Zhang, Mater. Sci. Eng. A 634 (2015) 167-175.
DOI URL |
[19] |
T.D. Xu, B.Y. Cheng, Prog. Mater Sci. 49 (2004) 109-208.
DOI URL |
[20] |
Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, H.M. Zhou, Mater. Sci. Eng. A 588 (2013) 347-356.
DOI URL |
[21] |
Y.C. Lin, Y.Q. Jiang, X.C. Zhang, J. Deng, X.M. Chen, Mater. Des. 61 (2014) 228-238.
DOI URL |
[22] |
D. Zhang, H.C. Jiang, Z.J. Cui, D.S. Yan, Y.Y. Song, L.J. Rong, J. Mater. Sci. Technol. 121 (2022) 40-51.
DOI URL |
[23] |
D.Y. Li, L.Q. Chen, Acta Mater. 46 (1998) 2573-2585.
DOI URL |
[24] |
Y.C. Lin, J.L. Zhang, M.S. Chen, J. Alloys Compd. 684 (2016) 177-187.
DOI URL |
[25] |
Y. Xu, L. Zhan, L. Xu, M. Huang, Mater. Sci. Eng. A 682 (2017) 54-62.
DOI URL |
[26] |
Z.Z. Chen, N. Kioussis, N. Ghoniem, D. Seif, Phys. Rev. B 81 (9) (2010) 094102.
DOI URL |
[27] | E. Kula, V. Weiss, Residual Stress and Stress Relaxation, Plenum Press, 1982. |
[28] |
J. Liu, F.L. Jiang, M.Z. Tang, B.B. Liu, Y.S. Sun, H. Zhang, J. Mater. Res. Technol. 9 (2020) 7201-7209.
DOI URL |
[29] |
X.F. Huang, Z.W. Liu, H.M. Xie, Acta Mech. Solida Sin. 26 (2013) 570-583.
DOI URL |
[30] |
D.A. Tanner, J.S. Robinson, Mater. Sci. Technol. 32 (2016) 1533-1543.
DOI URL |
[31] | I. Mitchell,Residual Stress Reduction During Quenching of Wrought 7075 Alu- minum Alloy, Worcester Polytechnic Institute, 2004, Master’s Thesis. |
[32] |
M. Koç, J. Culp, T. Altan, PJ. Mater, Process. Technol. 174 (2006) 342-354.
DOI URL |
[33] |
F.L. Jiang, H. Zhang, L.X. Li, J.H. Chen, Mater. Sci. Eng. A 552 (2012) 269-275.
DOI URL |
[34] |
Y.N. Li, Y.A. Zhang, X.W. Li, Z.H. Li, G.J. Wang, L.B. Jin, S.H. Huang, B.Q. Xiong, Rare Met. 38 (2019) 1051-1061.
DOI URL |
[35] |
D.A. Tanner, J.S. Robinson, Exp. Mech. 40 (20 0 0) 75-82.
DOI URL |
[36] |
J.S. Robinson, D.A. Tanner, S. Van Petegem, A. Evans, Mater. Sci. Technol. 28 (2013) 420-430.
DOI URL |
[37] |
M.D. Olson, J.S. Robinson, R.C. Wimpory, M.R. Hill, Mater. Sci. Technol. 32 (2016) 1427-1438.
DOI URL |
[38] |
J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, R.C. Wimpory, Mater. Charact. 65 (2012) 73-85.
DOI URL |
[39] | T.A. Stolarski, S. Tobe, Wear 205 (1997) 206-213. |
[40] | W.L. Cheng, I. Finnie, Residual Stress Measurement and the Slitting Method, Springer Science + Business Media, 2007. |
[41] | J. Guo, H.Y. Fu, B. Pan, R.K. Kang, Chin. J. Aeronaut. 34 (2021) 54-78. |
[42] |
N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35 (2012) 572-588.
DOI URL |
[43] |
G.S. Schajer, J. Eng. Mater. Technol. 110 (1988) 344-349.
DOI URL |
[44] |
X.D. Liu, X.D. Wang, Z.D. Guan, T. Jiang, K.H. Geng, Z.S. Li, Mech. Mater. 154 (2021) 103715.
DOI URL |
[45] | B. Clausen, C.R. D’Elia, M.B. Prime, M.R. Hill, J.E. Bishop, K.L. Johnson, B.H. Jared, K. M. Allen, D.K. Balch, R.A. Roach, D.W. Brown, Addit. Manuf. 36 (2020) 101555. |
[46] |
D.A. Tanner, J.S. Robinson, Finite Elem. Anal. Des. 39 (2003) 369-386.
DOI URL |
[47] |
M.B. Prime, J. Eng. Mater. Technol. 123 (2001) 162-168.
DOI URL |
[48] | F. Hosseinzadeh, J. Kowal, P.J. Bouchard, J. Eng. 8 (2014) 453-468. |
[49] |
W. Woo, G.B. An, E.J. Kingston, A.T. DeWald, D.J. Smith, M.R. Hill, Acta Mater. 61 (2013) 3564-3574.
DOI URL |
[50] |
L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49 (2001) 3443-3451.
DOI URL |
[51] |
Y.C. Wang, L.F. Cao, X.D. Wu, X. Tong, B. Liao, G.J. Huang, Z. Wang, J. Alloys Compd. 814 (2020) 152264.
DOI URL |
[52] |
T.F. Chung, Y.L. Yang, B.M. Huang, Z.S. Shi, J.G. Lin, T. Ohmura, J.R. Yang, Acta Mater. 149 (2018) 377-387.
DOI URL |
[53] | G.P. Dolan, J.S. Robinson, J. Mater. Process. Technol. 153-154 (2004) 346-351. |
[54] |
J.D. Bernardin, I. Mudawar, Int. J. Heat Mass Transf. 38 (1995) 863-873.
DOI URL |
[55] | D.J. Chakrabarti, L. J, R.R. Sawtell, G.B. Venema, International Conference on Aluminium Alloy, 2004. |
[56] | J.T. Staley, M. Tiryakioglu, in:Proceedings of the James T. Staley Honorary Sym- posium on Aluminum Alloys, 2001. |
[57] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[58] | Q. Li, X. Lin, Q. Luo, Y.a. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Min. Met. Mater. 29 (2022) 32-48. |
[59] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.-C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[60] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[61] |
J.S. Robinson, D.A. Tanner, Mater. Sci. Technol. 19 (2003) 512-518.
DOI URL |
[62] |
M. de Hass, J.T.M. De Hosson, Scr. Mater. 44 (2001) 281-286.
DOI URL |
[63] |
F.L. Jiang, H. Zhang, J. Mater. Sci. 53 (2017) 2830-2843.
DOI URL |
[64] |
Y. Zhang, B. Milkereit, O. Kessler, C. Schick, P.A. Rometsch, J. Alloys Compd. 584 (2014) 581-589.
DOI URL |
[65] |
A. Deschamps, Y. Brechet, Acta Mater. 47 (1998) 293-305.
DOI URL |
[66] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[67] |
K. Luo, B. Zang, S. Fu, Y. Jiang, D.Q. Yi, Trans. Nonferr. Metal. Soc. 24 (2014) 2130-2137.
DOI URL |
[68] |
D. Jiang, R. Yang, D. Wang, Z. Liu, Micron 143 (2021) 103011.
DOI URL |
[69] |
M. Niewczas, Z.S. Basinski, S.J. Basinski, J.D. Embury, Philos. Mag. A 81 (2001) 1121-1142.
DOI URL |
[70] |
F. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117 (2016) 47-56.
DOI URL |
[71] |
F. Jiang, H.S. Zurob, G.R. Purdy, X. Wang, H. Zhang, Metall. Mater. Trans. A 49 (2018) 5157-5168.
DOI URL |
[72] |
P. Dai, X. Luo, Y.Q. Yang, Z.D. Kou, B. Huang, C. Wang, J.X. Zang, J.G. Ru, Mater. Sci. Eng. A 729 (2018) 411-422.
DOI URL |
[73] |
A. Deschamps, C.R. Hutchinson, Acta Mater. 220 (2021) 117338.
DOI URL |
[1] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
[2] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
[3] | Bo Meng, Jinlong Wang, Lanlan Yang, Minghui Chen, Shenglong Zhu, Fuhui Wang. On the rumpling mechanism in nanocrystalline coatings: Improved by reactive magnetron sputtering with oxygen [J]. J. Mater. Sci. Technol., 2023, 132(0): 69-80. |
[4] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[5] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
[6] | Xianglong Zhou, Tao Yuan, Tianyu Ma. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging [J]. J. Mater. Sci. Technol., 2022, 106(0): 70-76. |
[7] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[8] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[9] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[10] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
[11] | Jie Tang, Mingcai Liu, Guowei Bo, Fulin Jiang, Chunhui Luo, Jie Teng, Dingfa Fu, Hui Zhang. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116(0): 130-150. |
[12] | P. Wang, X. Liu, H. Wang, J. Cao, J. Qi, J. Feng. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti + Sc2(WO4)3 composite filler metal [J]. J. Mater. Sci. Technol., 2022, 108(0): 102-109. |
[13] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[14] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[15] | Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure [J]. J. Mater. Sci. Technol., 2022, 126(0): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||