J. Mater. Sci. Technol. ›› 2023, Vol. 132: 166-178.DOI: 10.1016/j.jmst.2022.06.011
• Research Article • Previous Articles Next Articles
F. Wanga,b, L.M. Leic, X. Fuc, L. Shic, X.M. Luoa, Z.M. Songa, G.P. Zhanga,*(
)
Received:2022-04-18
Revised:2022-06-02
Accepted:2022-06-09
Published:2023-01-01
Online:2022-07-02
Contact:
G.P. Zhang
About author:* Institute of Metal Research, Chinese Academy of Sciences, China. E-mail address: gpzhang@imr.ac.cn (G.P. Zhang).F. Wang, L.M. Lei, X. Fu, L. Shi, X.M. Luo, Z.M. Song, G.P. Zhang. Toward developing Ti alloys with high fatigue crack growth resistance by additive manufacturing[J]. J. Mater. Sci. Technol., 2023, 132: 166-178.
Fig. 1. Schematic illustrations of (a) heat treatment routes for the LMD-fabricated TA19 alloys, (b) SEN samples and (c) sample sampling direction (Z-X). Here, LD: loading direction and ASD: applied stress direction.
Fig. 2. OM images of columnar PBGs for the (a) as-built and heat-treated samples with different conditions of (b) 940SAA, (c) 970SAA, (d) 1030SAA and (e) 1030SFA.
| PBGs | Internal microstructure | |||||
|---|---|---|---|---|---|---|
| Samples | Morphology | wβ (μm) | γ (°) | Morphology | wcolony (μm) | |
| as-built | Columnar | 206 ± 121 | 0.8-15.2 | Acicular martensite | 0.1-0.5 | / |
| 940SAA | Columnar | 217 ± 175 | 1.1-23 | Bi-lamellar | 1.23 ± 0.2 | / |
| 970SAA | Columnar | 369 ± 283 | 0-18 | Bi-lamellar | 1.32 ± 0.41 | / |
| 1030SAA | Near-equiaxed | 493 ± 249 | 0-28.7 | Widmanstätten | 0.62 ± 0.27 | 1.82 ± 0.53 |
| 1030SFA | Equiaxed | 534 ± 281 | / | Lamellar colony | 1.51 ± 0.44 | 55 ± 31 |
Table 1. Microstructure and its characteristic size of as-built and heat-treated samples.
| PBGs | Internal microstructure | |||||
|---|---|---|---|---|---|---|
| Samples | Morphology | wβ (μm) | γ (°) | Morphology | wcolony (μm) | |
| as-built | Columnar | 206 ± 121 | 0.8-15.2 | Acicular martensite | 0.1-0.5 | / |
| 940SAA | Columnar | 217 ± 175 | 1.1-23 | Bi-lamellar | 1.23 ± 0.2 | / |
| 970SAA | Columnar | 369 ± 283 | 0-18 | Bi-lamellar | 1.32 ± 0.41 | / |
| 1030SAA | Near-equiaxed | 493 ± 249 | 0-28.7 | Widmanstätten | 0.62 ± 0.27 | 1.82 ± 0.53 |
| 1030SFA | Equiaxed | 534 ± 281 | / | Lamellar colony | 1.51 ± 0.44 | 55 ± 31 |
Fig. 3. OM and SEM (upper right corner illustration) images of microstructures for (a, b) as-built and heat-treated samples with different conditions of (c) 940SAA, (d) 970SAA, (e) 1030SAA and (f) 1030SFA.
Fig. 4. (a) FCG rate (da/dN) versus stress intensity factor range (ΔK) with double logarithm case, (b) relation between the FCG thresholds (ΔKth) and the microstructure characteristic scale for the as-built and heat-treated samples, (c) near-threshold crack growth paths for the 940SAA sample and (d) near-threshold FCG behavior on the fracture for the 940SAA sample.
| Sample | n | c (m/cycle)/(MPa√m)n |
|---|---|---|
| as-built | 2.15 | 5.6 × 10−11 |
| 940SAA | 2.5 | 1.9 × 10−11 |
| 970SAA | 2.15 | 3.5 × 10−11 |
| 1030SAA | 2.29 | 1.3 × 10−11 |
| 1030SFA | 1.21 | 1.7 × 10−10 |
Table 2. Paris law parameters n and c of the as-built and heat-treated samples.
| Sample | n | c (m/cycle)/(MPa√m)n |
|---|---|---|
| as-built | 2.15 | 5.6 × 10−11 |
| 940SAA | 2.5 | 1.9 × 10−11 |
| 970SAA | 2.15 | 3.5 × 10−11 |
| 1030SAA | 2.29 | 1.3 × 10−11 |
| 1030SFA | 1.21 | 1.7 × 10−10 |
Fig. 6. (a) Angle (γ) of the growth direction of columnar PBG deviating from build direction (Z) and deflection angle (θij) of fatigue cracking path at columnar PBG boundary of the 1030SAA sample and (b) the crack deflection angle (ψij) at lamellar colony boundary in the 1030SFA sample (A-G are the symbols marking lamellar colony).
| Samples | σy (MPa) | ΔKth (MPa√m) | rc (μm) |
|---|---|---|---|
| as-built | 876 ± 15 | 3.59 | 0.7 |
| 940SAA | 825 ± 37 | 4.58 | 1.23 |
| 970SAA | 892 ± 47 | 4.71 | 1.11 |
| 1030SAA | 831 ± 28 | 5.08 | 1.49 |
| 1030SFA | 775 ± 8 | 4.79 | 1.52 |
Table 3. Values of ΔKth, σy and rc for the as-built and heat-treated samples.
| Samples | σy (MPa) | ΔKth (MPa√m) | rc (μm) |
|---|---|---|---|
| as-built | 876 ± 15 | 3.59 | 0.7 |
| 940SAA | 825 ± 37 | 4.58 | 1.23 |
| 970SAA | 892 ± 47 | 4.71 | 1.11 |
| 1030SAA | 831 ± 28 | 5.08 | 1.49 |
| 1030SFA | 775 ± 8 | 4.79 | 1.52 |
Fig. 7. Schematic illustrations of (a) the coordinate system for the AM system (X-Y-Z), (b) the crystal coordinate system (x[100]-y[010]-z[001]) of β grain, (c) the three-dimensional plate-like α lath and (d) the angle (φ) between the trace direction of the α lath and applied stress direction (ASD) on the observation surface (XOZ).
Fig. 8. Schematic illustrations of the long axis trace direction of different α variants in the three columnar PBGs containing the crack path for the 1030SAA sample.
Fig. 9. Theoretically calculated and experimentally measured angles (φ) and their angle difference (Δφ) of different α laths in the adjacent columnar PBGs of 1030SAA samples and the angle (γ) of the growth directions for the columnar PBGs deviating from the build direction (Z).
Fig. 10. Statistical distribution of experimentally measured φ of α laths in different heat-treated samples (The specific data are from Fig. 8 and Fig. S5.).
Fig. 12. LCM micrographs of fracture roughness for the (a) as-built and heat-treated samples with different conditions of (b) 940SAA, (c) 970SAA, (d) 1030SAA and (e) 1030SFA, (f) roughness values of different samples.
Fig. 13. Model diagrams of (a) the relationships between the angle (γ) of columnar PBGs deviating from build direction (Z) and the deflection angle (θij) of fatigue crack at columnar PBG boundary and the interaction between fatigue crack and α laths with different φ, as well as (b) the relationships between the angle (γ) and the angle (φ) of α laths.
Fig. 14. (a) Relation between the angle (γ) and the angle (φ), (b) schematic illustration of the best combination of angles (γ) of several adjacent columnar PBGs for high FCG resistance.
Fig. 15. Schematic diagram of (a) the scanning strategy and (b) the relationship between the proposed AM fabrication process parameters, molten pool geometry and columnar PBG growth direction.
| [1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
| [2] |
Y.G. Zhou, W.D. Zeng, H.Q. Yu, Mater. Sci. Eng. A 393 (2005) 204-212.
DOI URL |
| [3] |
C.H. Che-Haron, A. Jawaid, J. Mater. Process. Technol. 166 (2005) 188-192.
DOI URL |
| [4] |
E.O. Ezugwu, Z.M. Wang, J. Mater. Process. Technol. 68 (1997) 262-274.
DOI URL |
| [5] | S. Shao, M.M. Khonsari, S. Guo, W.J. Meng, N. Li, Addit. Manuf. 29 (2019) 100779. |
| [6] | E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, in:Proceedings of the15th Machining Innovations Conference for Aerospace Industry (MIC), Garb- sen, Germany, 2015, pp. 55-60. |
| [7] |
Y.J. Ma, J.W. Li, J.F. Lei, Z.Y. Tang, Y.Y. Liu, R. Yang, Acta Metall. Sin. 46 (2010) 1086-1092.
DOI URL |
| [8] |
P. Åkerfeldt, M.H. Colliander, R. Pederson, M.-L. Antti, Mater. Charact. 135 (2018) 245-256.
DOI URL |
| [9] |
J. Zhang, X. Wang, S. Paddea, X. Zhang, Mater. Des. 90 (2016) 551-561.
DOI URL |
| [10] |
A.K. Syed, X. Zhang, A.E. Davis, J.R. Kennedy, F. Martina, J.L. Ding, S. Williams, P.B. Prangnell, Mater. Sci. Eng. A 814 (2021) 141194.
DOI URL |
| [11] |
K. Wang, R. Bao, B. Jiang, Y. Wu, D. Liu, C. Yan, Int. J. Fatigue 116 (2018) 535-542.
DOI URL |
| [12] |
J. Zhang, X. Zhang, X. Wang, J. Ding, Y. Traoré, S. Paddea, S. Williams, Mater. Des. 104 (2016) 365-375.
DOI URL |
| [13] | X.B. Wang, X.F. He, T.S. Wang, Y.H. Li, Addit. Manuf. 35 (2020) 101174. |
| [14] |
X. Zhang, F. Martina, J. Ding, X. Wang, S.W. Williams, Fatigue Fract. Eng. Mater. Struct. 40 (2017) 790-803.
DOI URL |
| [15] |
W.B. Sun, Y.E. Ma, X.P. Ai, J.H. Li, Procedia Struct. Integr. 13 (2018) 1020-1025.
DOI URL |
| [16] |
Y. Xie, M. Gao, F. Wang, C. Zhang, K. Hao, H. Wang, X. Zeng, Mater. Sci. Eng. A 709 (2018) 265-269.
DOI URL |
| [17] |
P. Edwards, M. Ramulu, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 1228-1236.
DOI URL |
| [18] |
H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, Eng. Fract. Mech. 176 (2017) 263-280.
DOI URL |
| [19] |
Z. Zhao, J. Chen, H. Tan, J.G. Tang, X. Lin, Scr. Mater. 174 (2020) 53-57.
DOI URL |
| [20] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125 (2017) 390-400.
DOI URL |
| [21] |
M.T. Hasib, H.E. Ostergaard, X.P. Li, J.J. Kruzic, Int. J. Fatigue 142 (2021) 105955.
DOI URL |
| [22] |
Y. Zhai, D.A. Lados, E.J. Brown, G.N. Vigilante, Int. J. Fatigue 93 (2016) 51-63.
DOI URL |
| [23] |
J. Jiang, Z. Ren, Z. Ma, T. Zhang, P. Zhang, D.Z. Zhang, Z. Mao, Mater. Sci. Eng. A 772 (2020) 138742.
DOI URL |
| [24] |
B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, J. Alloy. Compd. 541 (2012) 177-185.
DOI URL |
| [25] |
B. Van Hooreweder, D. Moens, R. Boonen, J.P. Kruth, P. Sas, Adv. Eng. Mater. 14 (2012) 92-97.
DOI URL |
| [26] | V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, R. Knutsen, Addit. Manuf. 5 (2015) 68-76. |
| [27] |
S. Lenders, M. Thoene, A. Riemer, T. Niendorf, T. Troester, H.A. Richard, H.J. Maier, Int. J. Fatigue 48 (2013) 300-307.
DOI URL |
| [28] |
Z. Zhao, J. Chen, H. Tan, J. Tang, X. Lin, Scr. Mater. 174 (2020) 53-57.
DOI URL |
| [29] |
G. Terlinde, H.J. Rathjen, K.H. Schwalbe, Metall. Trans. A 19 (1988) 1037-1049.
DOI URL |
| [30] |
V.K. Saxena, V.M. Radhakrishnan, Metall. Mater. Trans. A 29 (1998) 245-261.
DOI URL |
| [31] |
F. Wang, L.M. Lei, X. Fu, Z.M. Song, L. Shi, B. Zhang, G.P. Zhang, Mater. Sci. Eng. A 782 (2020) 139284.
DOI URL |
| [32] |
Y. Gao, C. Wu, K. Peng, X. Song, Y. Fu, Q. Chen, M. Zhang, G. Wang, J. Liu, J. Mater. Res. Technol. 15 (2021) 1395-1407.
DOI URL |
| [33] |
M. Benedetti, V. Fontanari, M. Bandini, F. Zanini, S. Carmignato, Int. J. Fatigue 107 (2018) 96-109.
DOI URL |
| [34] |
Y. Zhu, D. Liu, X. Tian, H. Tang, H. Wang, Mater. Des. 56 (2014) 445-453.
DOI URL |
| [35] |
T. Sercombe, N. Jones, R. Day, A. Kop, Rapid Prototy. J. 14 (2008) 300-304.
DOI URL |
| [36] |
F.X. Gil Mur, D. Rodríguez, J.A. Planell, J. Alloy. Compd. 234 (1996) 287-289.
DOI URL |
| [37] |
E. Sallica-Leva, R. Caram, A.L. Jardini, J.B. Fogagnolo, J. Mech. Behav. Biomed. 54 (2016) 149-158.
DOI URL |
| [38] | S. Suresh, Fatigue of Materials, Cambridge University Press, 1991. |
| [39] |
W. Shen, A.B.O. Soboyejo, W.O. Syejo, Metall. Mater. Trans. A 35 (2004) 163-187.
DOI URL |
| [40] |
F. McBagonluri, E. Akpan, C. Mercer, W. Shen, W.O. Soboyejo, J. Eng. Mater. Technol. 127 (2005) 46-57.
DOI URL |
| [41] |
J. Qiu, X. Feng, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, R. Yang, Int. J. Fatigue 83 (2016) 150-160.
DOI URL |
| [42] |
M. Abecassis, A. Koster, V.A. Esin, V. Chiaruttini, V. Maurel, Int. J. Fatigue 118 (2019) 209-224.
DOI URL |
| [43] |
B. Vrancken, V. Cain, R. Knutsen, J. Van Humbeeck, Scr. Mater. 87 (2014) 29-32.
DOI URL |
| [44] | A. Riemer, H.A. Richard,Proc. Struct. Integr. 2 (2016) 1229-1236. |
| [45] |
A.K. Syed, B. Ahmad, H. Guo, T. Machry, D. Eatock, J. Meyer, M.E. Fitzpatrick, X. Zhang, Mater. Sci. Eng. A 755 (2019) 246-257.
DOI URL |
| [46] |
Z. Jikui, W. Xueyuan, S. Paddea, Z. Xiang, Mater. Des. 90 (2016) 551-561.
DOI URL |
| [47] |
J. Oh, J.G. Lee, N.J. Kim, S. Lee, E.W. Lee, J. Mater. Sci. 39 (2004) 587-591.
DOI URL |
| [48] |
P. Kumar, U. Ramamurty, Acta Mater. 169 (2019) 45-59.
DOI URL |
| [49] | J.R. Rice, D.M. Tracey, in: Numerical and Computer Methods in Struc- tural Mechanics, Elsevier Brown University, Providence, Rhode Island, 1973, pp. 585-623. |
| [50] |
B. Liu, K. Wang, R. Bao, F. Sui, Int. J. Fatigue 137 (2020) 105622.
DOI URL |
| [51] |
T.H. Becker, N.M. Dhansay, G.M. Ter Haar, K. Vanmeensel, Acta Mater. 197 (2020) 269-282.
DOI URL |
| [52] |
S. Zherebtsov, G. Salishchev, S.L. Semiatin, Philos. Mag. Lett. 90 (2010) 903-914.
DOI URL |
| [53] |
P. Gaunt, J.W. Christian, Acta Metall. 7 (1959) 529-533.
DOI URL |
| [54] |
D. Qiu, M.X. Zhang, P.M. Kelly, T. Furuhara, Acta Mater. 67 (2014) 373-382.
DOI URL |
| [55] |
T. Furuhara, S. Takagi, H. Watanabe, T. Maki, Metall. Mater. Trans. A 27 (1996) 1635-1646.
DOI URL |
| [56] |
T.H. Becker, P. Kumar, U. Ramamurty, Acta Mater. 219 (2021) 117240.
DOI URL |
| [57] |
X.-H. Shi, W.-D. Zeng, C.-L. Shi, H.-J. Wang, Z.-Q. Jia, Mater. Sci. Eng. A 621 (2015) 143-148.
DOI URL |
| [58] |
Y. Chong, T. Bhattacharjee, N. Tsuji, Mater. Sci. Eng. A 762 (2019) 138077.
DOI URL |
| [59] |
A .A. Antonysamy J. Meyer P.B. Prangnell, Mater. Charact. 84 (2013) 153-168.
DOI URL |
| [60] | D. Fu, X. Li, M. Zhang, M. Wang, Z. Zhang, S. Qu, Materials 13 (2020) 962. |
| [61] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
| [62] |
A. Keshavarzkermani, E. Marzbanrad, R. Esmaeilizadeh, Y. Mahmoodkhani, U. Ali, P.D. Enrique, N.Y. Zhou, A. Bonakdar, E. Toyserkani, Opt. Laser. Technol. 116 (2019) 83-91.
DOI URL |
| [63] | Q.L. Guo, C. Zhao, M.L. Qu, L.H. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N. D. Parab, K. Fezzaa, W. Everhart, T. Sun, L.Y. Chen, Addit. Manuf. 28 (2019) 600-609. |
| [64] | G.P. Dinda, A.K. Dasgupta, S. Bhattacharya, H. Natu, B. Dutta, J. Mazumder, Met- all. Mater. Trans. A 44 (2013) 2233-2242. |
| [65] |
G.P. Dinda, A.K. Dasgupta, J. Mazumder, Scr. Mater. 67 (2012) 503-506.
DOI URL |
| [66] |
X. Zhou, D. Xu, S. Geng, Y. Fan, M. Liu, Q. Wang, F. Wang, Mater. Charact. 179 (2021) 111302.
DOI URL |
| [67] | H. Peng, W. Fang, C. Dong, Y. Yi, X. Wei, B. Luo, S. Huang, Materials 14 (2021) 3004. |
| [1] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
| [2] | H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
| [3] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
| [4] | Qiyu Wang, Shenghu Chen, Xinliang Lv, Haichang Jiang, Lijian Rong. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114(0): 7-15. |
| [5] | Wei Song, Hai Wang, Yi Li, Shuyuan Zhang, Ling Ren, Ke Yang. Ultrafine grained metastable Ti6Al4V5Cu alloy with high strength and excellent low-cycle fatigue property [J]. J. Mater. Sci. Technol., 2022, 129(0): 240-250. |
| [6] | H.R. Zhang, H.Z. Niu, M.C. Zang, Y.H. Zhang, S. Liu, D.L. Zhang. Tensile properties and deformation behavior of an extra-low interstitial fine-grained powder metallurgy near alpha titanium alloy by recycling coarse pre-alloyed powder [J]. J. Mater. Sci. Technol., 2022, 129(0): 96-107. |
| [7] | Yi Xiong, Phani S. Karamched, Chi-Toan Nguyen, David M.Collins, Christopher M.Magazzeni, Edmund Tarleton, Angus J.Wilkinson. Macroscopic analysis of time dependent plasticity in Ti alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 135-140. |
| [8] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
| [9] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
| [10] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
| [11] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
| [12] | Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size [J]. J. Mater. Sci. Technol., 2021, 77(0): 90-99. |
| [13] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
| [14] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
| [15] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
