J. Mater. Sci. Technol. ›› 2023, Vol. 132: 179-192.DOI: 10.1016/j.jmst.2022.04.053
• Research Article • Previous Articles Next Articles
Kui Xuea, Pei-Hong Tana, Ze-Hui Zhaoa, Lan-Yue Cuia,*(
), M Bobby Kannanb, Shuo-Qi Lia, Cheng-Bao Liua, Yu-Hong Zouc, Fen Zhanga, Zhuo-Yuan Chend, Rong-Chang Zenga,e
Received:2021-12-02
Revised:2022-03-20
Accepted:2022-04-11
Published:2023-01-01
Online:2022-06-07
Contact:
Lan-Yue Cui
About author:* E-mail addresses: cuilanyue2010@126.com (L.-Y. Cui).Kui Xue, Pei-Hong Tan, Ze-Hui Zhao, Lan-Yue Cui, M Bobby Kannan, Shuo-Qi Li, Cheng-Bao Liu, Yu-Hong Zou, Fen Zhang, Zhuo-Yuan Chen, Rong-Chang Zeng. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy[J]. J. Mater. Sci. Technol., 2023, 132: 179-192.
Fig. 2. SEM images of (a, b) MAO and (c, d) MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings (insert in a and c are macrographs); (e) elemental contents of the two coatings; cross-sectional image of the (f) MAO, (h) MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings and their C mapping (g, i).
Fig. 3. (a) FT-IR spectra of the MAO, MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings, pure Cur, β-CD, and SA; (b) XRD patterns of the MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; (c) XPS overview spectra of the MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; detailed regions of Mg 1 s and O 1 s for (e, f) MAO and (g, h) MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; (i) acoustic signal and frictional force of the MAO/(β-CD@Cur)-SA-Mg(OH)2 coating.
Fig. 5. (a-c) Nyquist plots, (d) bode and bode phase angle plots (e) potentiodynamic polarization curves of AZ31, MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; and corresponding EC models for (f) AZ31; (g) MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings.
Fig. 6. (a) HER curves and (b) XRD patterns of AZ31 alloy, MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; microscopic and macroscopic morphology of (c) AZ31 alloy, (d) MAO and (e) MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; (f) EDS atominc countent of (c, d, e) after an immersion of 468 h in Hank's solution.
Fig. 7. SEM images of MAO/(β-CD@Cur)-SA-Mg(OH)2 coating with the immersion of (a) 0 h, (b) 150 h and (c) 350 h, and the correspongding (d) EDS spectra of (a-c); (e) FT-IR sepectra and (f) XRD patterns of the samples after an immersion of 0 h, 150 h and 350 h.
Fig. 8. (a) Photothermal heating curves of AZ31 Mg alloy, MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings in atmosphere at room temperature and in Hank's solution, (b) recycling photothermal profiles of MAO/(β-CD@Cur)-SA-Mg(OH)2 coating for six on/off cycles. (c) ultraviolet spectrum of AZ31 substrate, MAO and MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings; Infrared photography of (d) AZ31 substrate, (e) MAO coating, (f) MAO/(β-CD@Cur)-SA-Mg(OH)2 coating in atmosphere and (g) AZ31 substrate, (h) MAO coating, (i) MAO/(β-CD@Cur)-SA-Mg(OH)2 coating in Hank's solution after NIR irradiation. All tests were carried out under irradiation of 808 nm NIR laser (1.0 W cm?2).
Fig. 9. (a) Antibacterial rate of the samples against S. aureus and E. coli in dark and after exposure to 808 nm NIR for 30 min (n = 3, p* <0.05, p?? < 0.01, p??? < 0.001, p???? < 0.0001); (b) pH value of the bacterial solution during the antibacterial test; (c) coresponding photographs of bacterial colonies.
Fig. 10. SEM images of E. coli and S. aureus under dark or NIR irradition after co-cultureed with (a-d) AZ31 substrate, (e-h) MAO and (i-l) MAO/(β-CD@Cur)-SA-Mg(OH)2 coatings.
| Coating/Particles | Antibacterial factor | Antibacterial rate (%) | Shortcoming | Corrosion resisitance (icorr) |
|---|---|---|---|---|
| Mg-Ag [ | Ag | 90% | corrosion | Easily corrosion |
| Mg-MAO@Cu [ | Cu | 95% | corroison | Increase |
| MAO/CHI [ | CHI | weaker | antibacterial ability | Increase (2.48×10−5 →6.71×10−6) |
| MAO@TA [ | TA | 92% | antibacterial ability | Increase (1.47×10−5→5.22×10−7) |
| MAO/CIP-PMTMS [ | CIP | 99% | drug resistance | Increase (1.61×10−5→7.13×10−8) |
| GS/PAH/PAA [ | GS | 99.49% | drug resistance, burst release | Increase (8.01×10−6→3.67×10−7) |
| melanosome [ | lysozyme | 97.90% | / | / |
| Zn-doped prussian blue [ | Zinc-doped Prussian blue | 98.42% | / | / |
| graphene oxidemodified porous TiO2 [ | Photothermal(graphene) | ∼ 90% | / | / |
| polydopamine nanocoating [ | Photothermal (polydopamine) | 96% (S. aureus), 84% (E. coli), 93% (C. albicans) | / | / |
| MAO/(β-CD@Cur)-SA-Mg(OH)2 coating | Photothermal (Curcumin) | 99.95% (S.aureus), 98.82% (E.coli) | / | Increase (2.19×10−5→5.35×10−9) |
Table 1. Research of antibacterial coating on magnesium alloy surface and some photothermal antibacterial method.
| Coating/Particles | Antibacterial factor | Antibacterial rate (%) | Shortcoming | Corrosion resisitance (icorr) |
|---|---|---|---|---|
| Mg-Ag [ | Ag | 90% | corrosion | Easily corrosion |
| Mg-MAO@Cu [ | Cu | 95% | corroison | Increase |
| MAO/CHI [ | CHI | weaker | antibacterial ability | Increase (2.48×10−5 →6.71×10−6) |
| MAO@TA [ | TA | 92% | antibacterial ability | Increase (1.47×10−5→5.22×10−7) |
| MAO/CIP-PMTMS [ | CIP | 99% | drug resistance | Increase (1.61×10−5→7.13×10−8) |
| GS/PAH/PAA [ | GS | 99.49% | drug resistance, burst release | Increase (8.01×10−6→3.67×10−7) |
| melanosome [ | lysozyme | 97.90% | / | / |
| Zn-doped prussian blue [ | Zinc-doped Prussian blue | 98.42% | / | / |
| graphene oxidemodified porous TiO2 [ | Photothermal(graphene) | ∼ 90% | / | / |
| polydopamine nanocoating [ | Photothermal (polydopamine) | 96% (S. aureus), 84% (E. coli), 93% (C. albicans) | / | / |
| MAO/(β-CD@Cur)-SA-Mg(OH)2 coating | Photothermal (Curcumin) | 99.95% (S.aureus), 98.82% (E.coli) | / | Increase (2.19×10−5→5.35×10−9) |
| [1] |
R. Waksman, Catheter. Cardiovasc. Interv. 70 (3) (2007) 407-414.
DOI URL |
| [2] | W. Jiang, Q. Tian, T. Vuong, M. Shashaty, C. Gopez, T. Sanders, H. Liu, ACS Bio- mater. Sci. Eng. 3 (6) (2017) 936-950. |
| [3] | Y. Zhang, J. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D. Shi, J. Wang, S. Chen, J.Q. Feng, D.H. Chow, X. Xie, L. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H. Li, D. Zhao, X. Guo, K. Chan, F. Witte, H.C. Chan, Y. Zheng, L. Qin, Nat. Med. 22 (10) (2016) 1160-1169. |
| [4] | M.I. Rahim, R. Eifler, B. Rais, P.P. Mueller, J. Biomed. Mater. Res. A 103 (11)(2015) 3526-3532. |
| [5] |
H. Qin, Y. Zhao, M. Cheng, Q. Wang, Q. Wang, J. Wang, Y. Jiang, Z. An, X. Zhang, RSC Adv. 5 (28) (2015) 21434-21444.
DOI URL |
| [6] |
P. Hou, C. Zhao, P. Cheng, H. Wu, J. Ni, S. Zhang, T. Lou, C. Wang, P. Han, X. Zhang, Y. Chai, Biomed. Mater. 12 (1) (2016) 015010.
DOI URL |
| [7] |
J. Ma, N. Zhao, L. Betts, D. Zhu, J. Mater. Sci. Technol. 32 (9) (2016) 815-826.
DOI URL |
| [8] |
Y. Liu, Y. Zheng, X.-. H. Chen, J.-. A. Yang, H. Pan, D. Chen, L. Wang, J. Zhang, D. Zhu, S. Wu, K.W.K. Yeung, R.-. C. Zeng, Y. Han, S. Guan, Adv. Funct. Mater. 29 (2019) 1805402.
DOI URL |
| [9] | E.K. Brooks, R. Ahn, M.E. Tobias, L.A. Hansen, N.R. Luke-Marshall, L. Wild, A. A. Campagnari, M.T. Ehrensberger, J. Biomed. Mater. Res. Part B 106 (1)(2018) 221-227. |
| [10] |
Y. Zhu, W. Gao, H. Huang, W. Chang, S. Zhang, R. Zhang, R. Zhao, Y. Zhang, Appl. Surf. Sci. 487 (2019) 581.
DOI URL |
| [11] | A. Sasireka, R. Rajendran, P. Priya, V. Raj, ChemistrySelect 4 (4) (2019) 1166-1175. |
| [12] | M. Seyfi, A. Fattah-alhosseini, M. Pajohi-Alamoti, E. Nikoomanzari, J. Asian Ce- ram. Soc. 9 (2021) 1-14. |
| [13] | L.-.Y. Cui, J. Xu, N. Lu, R.-. C. Zeng, Y.-. H. Zou, S.-. Q. Li, F. Zhang, Trans. Nonfer- rous Met. Soc. China 27 (5) (2017) 1081-1086. |
| [14] | A. Escobar, N.E. Muzzio, P. Andreozzi, S. Libertone, E. Tasca, O. Azzaroni, M. Grzelczak, S.E. Moya, Adv. Mater. Interfaces 6 (22) (2019) 1970140. |
| [15] | L.Y. Cui, H.P. Liu, K. Xue, W.L. Zhang, R.C. Zeng, S.Q. Li, D.K. Xu, E.H. Han, S.K. Guan, J. Electrochem. Soc. 165 (11) (2018) C821-C829. |
| [16] |
L. Liu, P. Li, Y. Zou, K. Luo, F. Zhang, R.C. Zeng, S. Li, Surf. Coat. Technol. 291 (2016) 7-14.
DOI URL |
| [17] |
X.J. Ji, Q. Cheng, J. Wang, Y.B. Zhao, Z.Z. Han, F. Zhang, S.Q. Li, R.C. Zeng, Z. L. Wang, Front. Mater. Sci. 13 (1) (2019) 87-98.
DOI URL |
| [18] |
J.M. Vaz, T.B. Taketa, J. Hernandez-Montelongo, P. Chevallier, M.A. Cotta, D. Mantovani, M.M. Beppu, Appl. Surf. Sci. 445 (2018) 478-487.
DOI URL |
| [19] | S.H. Mun, D.K. Joung, Y.S. Kim, O.H. Kang, S.B. Kim, Y.S. Seo, Y.C. Kim, D.S. Lee, D. W. Shin, K.T. Kweon, D.Y. Kwon, Phytomedicine 20 ((8-9) (2013) 714-718. |
| [20] | K. Su, L. Tan, X. Liu, Z. Cui, Y. Zheng, B. Li, Y. Han, Z. Li, S. Zhu, Y. Liang, X. Feng, X. Wang, S. Wu, ACS Nano 14 (2) (2020) 2077-2089. |
| [21] | C. Liu, X. Wang, J. Liu, Q. Yue, S. Chen, J.W.Y. Lam, L. Luo, B.Z. Tang, Adv. Mater. 32 (43) (2020) e2004685. |
| [22] | Y. Xiang, C. Mao, X. Liu, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, D. Zheng, X. Wang, S. Wu, Small 15 (22) (2019) e1900322. |
| [23] |
Y. Liu, K. Ai, L. Lu, Chem. Rev. 114 (9) (2014) 5057-5115.
DOI URL |
| [24] | J. Li, X. Liu, Z. Zhou, L. Tan, X. Wang, Y. Zheng, Y. Han, D.F. Chen, K.W.K. Yeung, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, S. Wu, ACS Nano 13 (10) (2019) 11153-11167. |
| [25] | H. Wang, J. Chang, M. Shi, W. Pan, N. Li, B. Tang, Angew. Chem. Int. Ed. Engl. 58 (4) (2019) 1057-1061. |
| [26] | K. Dou, W. Zhu, Y. Zou, Y. Gu, J. Li, S. Zhang, Z. Liu, H. Zeng, J. Mater. Chem. B 5 (35) (2017) 7393-7402. |
| [27] |
M. Borzenkov, M. Moros, C. Tortiglione, S. Bertoldi, N. Contessi, S. Fare, A. Taglietti, A. D’Agostino, P. Pallavicini, M. Collini, G. Chirico, Beilstein J. Nanotechnol. 9 (2018) 2040-2048.
DOI URL |
| [28] | R.C. Martin, E. Locatelli, Y. Li, P. Matteini, I. Monaco, G. Cui, S. Li, M. Banchelli, R. Pini, M. Comes Franchini, J. Mater. Chem. B 4 (2) (2016) 207-211. |
| [29] |
H. Batra, S. Pawar, D. Bahl, Pharmacol. Res. 139 (2019) 91-105.
DOI URL |
| [30] | D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, L. Huang, Chem. Biodivers. 17 (8) (2020) e20 0 0171. |
| [31] |
M. Condat, P.E. Mazeran, J.P. Malval, J. Lalevée, F. Morlet-Savary, E. Renard, V. Langlois, S.A. Andalloussi, D.L. Versace, RSC Adv. 5 (104) (2015) 85214-85224.
DOI URL |
| [32] |
B. Li, R. Huang, J. Ye, L. Liu, L. Qin, J. Zhou, Y. Zheng, S. Wu, Y. Han, Chem. Eng. J. 403 (2021) 126323.
DOI URL |
| [33] |
M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani, A. Saedi, Mater. Sci. Eng. C Mater. Biol. Appl. 104 (2019) 109810.
DOI URL |
| [34] | I. Shlar, S. Droby, V. Rodov, Colloid Surf. B-Biointerfaces 164 (2018) 379-387. |
| [35] |
Z. Aytac, T. Uyar, Int. J. Pharm. 518 (1-2) (2017) 177-184.
DOI URL |
| [36] |
S. Dhiman, B. Srivastava, G. Singh, M. Khatri, S.K. Arya, Int. J. Biol. Macromol. 156 (2020) 1347-1358.
DOI URL |
| [37] |
W. Ren, Y. Yan, L. Zeng, Z. Shi, A. Gong, P. Schaaf, D. Wang, J. Zhao, B. Zou, H. Yu, G. Chen, E.M. Brown, A. Wu, Adv. Healthc. Mater. 4 (10) (2015) 1526-1536.
DOI URL |
| [38] |
Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Adv. Mater. 25 (9) (2013) 1353-1359.
DOI URL |
| [39] | K. Xue, L.X. Liang, S.C. Cheng, H.P. Liu, L.Y. Cui, R.C. Zeng, S.Q. Li, Z.L. Wang, Prog. Org. Coat. 158 (2021) 106357. |
| [40] |
L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, E.H. Han, Corros. Sci. 118 (2017) 84-95.
DOI URL |
| [41] |
C.Y. Li, X.L. Fan, L.Y. Cui, R.C. Zeng, Corros. Sci. 168 (2020) 108570.
DOI URL |
| [42] |
A. Celebioglu, T. Uyar, Food Chem. 317 (2020) 126397.
DOI URL |
| [43] |
X. Zhao, X. Wang, T. Lou, J. Hazard. Mater. 403 (2021) 124054.
DOI URL |
| [44] |
A. Celebioglu, T. Uyar, Mol. Pharm. 16 (10) (2019) 4387-4398.
DOI URL |
| [45] |
P. Amaravathy, T.S.S. Kumar, J. Magnes. Alloy. 7 (4) (2019) 584-596.
DOI URL |
| [46] | Y. Ren, H. Liu, X. Liu, Y. Zheng, Z. Li, C. Li, K.W.K. Yeung, S. Zhu, Y. Liang, Z. Cui, S. Wu, Cell Rep. Phys. Sci. 1 (11) (2020) 100245. |
| [47] |
G. Huang, Y. Yan, D. Xu, J. Wu, C. Xu, L. Fu, B. Lin, Food Chem. 337 (2021) 127987.
DOI URL |
| [48] |
J. Wang, F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, D. Zhao, J. Meng, Y. Li, W. Li, K. Chan, L. Qin, Acta Biomater. 21 (2015) 237-249.
DOI URL |
| [49] |
D. Tie, F. Feyerabend, W.D. Muller, R. Schade, K. Liefeith, K.U. Kainer, R. Willumeit, Eur. Cell Mater. 25 (2013) 284-298 discussion 298.
URL PMID |
| [50] |
X. Yan, M.-. C. Zhao, Y. Yang, L. Tan, Y.-. C. Zhao, D.-. F. Yin, K. Yang, A. Atrens, Corros. Sci. 156 (2019) 125-138.
DOI URL |
| [51] |
C. Yu, L.Y. Cui, Y.F. Zhou, Z.Z. Han, X.B. Chen, R.C. Zeng, Y.H. Zou, S.Q. Li, F. Zhang, E.H. Han, S.K. Guan, Surf. Coat. Technol. 344 (2018) 1-11.
DOI URL |
| [52] |
Y. Zhao, X. Chen, S. Li, R. Zeng, F. Zhang, Z. Wang, S. Guan, J. Colloid Interfaces Sci. 547 (2019) 309-317.
DOI URL |
| [53] |
J. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, X. Wang, S. Wu, Nat. Commun. 10 (1) (2019) 4490.
DOI URL |
| [54] | W.X. Lei, K.F. Ren, T.T. Chen, X.C. Chen, B.C. Li, H. Chang, J. Ji, Adv. Mater. Inter- faces 3 (22) (2016) 1600767. |
| [55] |
M.Z. Chai, M.W. An, X.Y. Zhang, P.K. Chu, Rare Met. 41 (2022) 540-545.
DOI URL |
| [56] |
N.M. Patro, A. Sultana, K. Terao, D. Nakata, A. Jo, A. Urano, Y. Ishida, R.N. Gorantla, V. Pandit, K. Devi, S. Rohit, B.K. Grewal, E.M. Sophia, A. Suresh, V. K. Ekbote, S. Suresh, J. Incl. Phenom. Macrocycl. Chem. 78 (1-4) (2013) 471-483.
DOI URL |
| [57] |
S. Dhiman, B. Srivastava, G. Singh, M. Khatri, S.K. Arya, Int. J. Biol. Macromol. 156 (2020) 1347-1358.
DOI URL |
| [58] | C.W. Song, H. Park, R.J. Griffin, Radiat. Res. 155 (4) (2001) 515-528. |
| [59] |
H. Luo, Q. Wang, Y. Deng, T. Yang, H. Ke, H. Yang, H. He, Z. Guo, D. Yu, H. Wu, H. Chen, Adv. Funct. Mater. 27 (39) (2017) 1702834.
DOI URL |
| [1] | Yaojia Ren, Hong Wu, Bin Liu, Yong Liu, Sheng Guo, Z.B. Jiao, Ian Baker. A comparative study on microstructure, nanomechanical and corrosion behaviors of AlCoCuFeNi high entropy alloys fabricated by selective laser melting and laser metal deposition [J]. J. Mater. Sci. Technol., 2022, 131(0): 221-230. |
| [2] | Huafang Li, Yan Huang, Xiaojing Ji, Cuie Wen, Lu-Ning Wang. Fatigue and corrosion fatigue behaviors of biodegradable Zn-Li and Zn-Cu-Li under physiological conditions [J]. J. Mater. Sci. Technol., 2022, 131(0): 48-59. |
| [3] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
| [4] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
| [5] | Cunxiu Zhang, Xiaolong Lu, Cong Wang, Xudong Sui, Yanfang Wang, Haibin Zhou, Junying Hao. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow [J]. J. Mater. Sci. Technol., 2022, 107(0): 172-182. |
| [6] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
| [7] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
| [8] | Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107(0): 43-51. |
| [9] | Yue Liu, Feng Peng, Guang-Ling Yang, Zhi-Hui Xie, Wenxin Dai, Yuejun Ouyang, Liang Wu, Chuan-Jian Zhong. Coupling a titanium dioxide based heterostructure photoanode with electroless-deposited nickel-phosphorus alloy coating on magnesium alloy for enhanced corrosion protection [J]. J. Mater. Sci. Technol., 2022, 126(0): 252-265. |
| [10] | Xiaoqi Yue, Zhile Yang, Luyao Huang, Lei Zhang, Jun Li, Zhaozhan Xue, Jinshan Pan. Passivation characteristics of ultra-thin 316L foil in NaCl solutions [J]. J. Mater. Sci. Technol., 2022, 127(0): 192-205. |
| [11] | Rui Liu, Li Liu, Fuhui Wang. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review [J]. J. Mater. Sci. Technol., 2022, 112(0): 230-238. |
| [12] | Da-Hai Xia, Cheng-Man Deng, Digby Macdonald, Sina Jamali, Douglas Mills, Jing-Li Luo, Michael G. Strebl, Mehdi Amiri, Weixian Jin, Shizhe Song, Wenbin Hu. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112(0): 151-183. |
| [13] | Suyun Liu, Xuewan Wang, Qi Yin, Xiongzhi Xiang, Xian-Zhu Fu, Xian-Zong Wang, Jing-Li Luo. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112(0): 263-276. |
| [14] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
| [15] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
