J. Mater. Sci. Technol. ›› 2022, Vol. 127: 192-205.DOI: 10.1016/j.jmst.2022.01.043
• Research Article • Previous Articles Next Articles
Xiaoqi Yuea,b,c, Zhile Yanga, Luyao Huangd, Lei Zhanga,*(), Jun Lie, Zhaozhan Xuee, Jinshan Panb,*(
)
Received:
2021-10-27
Revised:
2021-12-22
Accepted:
2022-01-11
Published:
2022-11-10
Online:
2022-11-10
Contact:
Lei Zhang,Jinshan Pan
About author:
jinshanp@kth.se (J. Pan)Xiaoqi Yue, Zhile Yang, Luyao Huang, Lei Zhang, Jun Li, Zhaozhan Xue, Jinshan Pan. Passivation characteristics of ultra-thin 316L foil in NaCl solutions[J]. J. Mater. Sci. Technol., 2022, 127: 192-205.
Empty Cell | C | Si | Mn | P | S | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Foil | 0.016 | 0.45 | 1.18 | 0.023 | 0.001 | 17.17 | 12.14 | 2.10 | 0.098 | Bal. |
Bulk | 0.028 | 0.98 | 1.99 | 0.045 | 0.030 | 17.50 | 13.01 | 2.50 | 0. 110 | Bal. |
Table 1. Chemical composition for ultra-thin 316L foil and wrought 316L bulk material (wt.%).
Empty Cell | C | Si | Mn | P | S | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Foil | 0.016 | 0.45 | 1.18 | 0.023 | 0.001 | 17.17 | 12.14 | 2.10 | 0.098 | Bal. |
Bulk | 0.028 | 0.98 | 1.99 | 0.045 | 0.030 | 17.50 | 13.01 | 2.50 | 0. 110 | Bal. |
Fig. 2. Microstructure characteristics for the ultra-thin 316L foil: (a) EBSD diffraction band contrast map, (b) inverse pole figure in direction Z (IPF Z) map, (c) grain size distribution, and (d) XRD pattern in comparison with the wrought 316L.
Fig. 3. Cross-section EBSD images (scale bar: 10 μm): (a) IPF Z map, (b) phase contrast map (red for austenite), (c) KAM map; and (d) SEM/EDX images showing oxide inclusions in the ultra-thin 316L foil.
Fig. 4. (a) Polarisation curves for the ultra-thin 316L foil, (b) comparison of corrosion potential and breakdown potential, and (c) corrosion current density with typical wrought 316L [42], [43], [44], [45], [46], [47].
Fig. 5. XPS spectra of O 1s for the passive film formed on (a) ultra-thin 316L foil and (b) wrought 316L after one-week exposure in 3.5 wt.% NaCl at pH 7, measured at various incident angles of the X-ray.
Fig. 6. Percentages of the O in oxides, hydroxides, and adsorbed H2O in the passive film formed on ultra-thin 316L foil and wrought 316L after one-week exposure in 3.5 wt.% NaCl at pH 7, measured at (a) 0° and (b) 60° incident angles, respectively.
Fig. 7. XPS spectra (a) Fe 2p3/2, (b) Cr 2p3/2, (c) Ni 2p3/2, and (d) Mo 3d5/2 of the natural passive film formed on the wrought 316L and the ultra-thin 316L foil after one-week exposure in 3.5 wt.% NaCl at pH 7, measured at a 0° incident angle. Percentages of the (e) oxidic components (ox?+?hyox) and (f) metallic layer for Fe, Cr, Ni, and Mo on the wrought 316L and the ultra-thin 316L foil.
Fig. 8. XPS spectra (a) Fe 2p3/2 and (b) Cr 2p3/2 of the passive film formed on the wrought 316L and the ultra-thin 316L foil after one-week exposure in 3.5 wt.% NaCl at pH 7, measured at a 60° incident angle. Percentages of the oxidic components (ox+hyox) for Fe and Cr on (c) the wrought 316L and (d) the ultra-thin 316L foil.
Fig. 9. (a) Angle dependence of the oxide content and the Cr and Fe components in the passive film, and (b) estimated thickness of the passive film on the wrought 316L and the ultra-thin 316L foil formed after one-week exposure in 3.5 wt.% NaCl at pH 7.
Fig. 10. (a) Bode plots for the ultra-thin 316L foil measured at OCP after 24 h of exposure in 3.5 wt.% NaCl at different pH values, (b) the evolution of Rp and Ceff from 1 to 24 h, and (c) the thicknesses of passive film calculated from the capacitance at various pH conditions.
Fig. 11. (a) Bode plots for the ultra-thin 316L foil measured after 24 h of polarisation at different potentials in 3.5 wt.% NaCl at pH 7, and (b) the evolution of Rct and Ceff from 1 to 24 h.
Fig. 12. (a) Mott-Schottky plots and (b) donor/acceptor density of the passive films formed on the ultra-thin 316L foil in 3.5 wt.% NaCl at different formation potentials and pH values, measured with the frequency of 100 Hz.
Fig. 13. ToF-SIMS depth profiles for the ultra-thin 316L foil: (a, b) as-received; and polarised at (c, d) 0.2 V and (e, f) 0.6 V at pH 7; and (g, h) polarised at 0.2 V at pH 2.
[1] |
J.S. Lee, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, K. Fushimi, Electrochim. Acta 220 (2016) 304-311.
DOI URL |
[2] |
Z. Wang, L. Zhang, X. Tang, Z.R. Zhang, M.X Lu, Appl. Surf. Sci. 423 (2017) 457-464.
DOI URL |
[3] | S.S. Xin, J. Xu, F.J. Lang, M.C. Li, Adv. Mater. Res. 299-300 (2011) 175-178. |
[4] | Z. Wang, F. Di-Franco, A. Seyeux, S. Zanna, V. Maurice, P. Marcus, J. Elec-trochem. Soc. 166 (2019) C3376. |
[5] |
R. Nishimura, Y. Maeda, Corros. Sci. 46 (2004) 769-785.
DOI URL |
[6] |
A. Burke, J. Power Sources 91 (2000) 37-50.
DOI URL |
[7] |
D.C. Kong, X.Q. Ni, C.F. Dong, X.W. Lei, L. Zhang, C. Man, J.Z. Yao, X.Q. Cheng, X.G. Li, Mater. Des. 152 (2018) 88-101.
DOI URL |
[8] |
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44 (2015) 1777-1790.
DOI PMID |
[9] | A. Das, A. Barai, I. Masters, D. Williams, World Electr, Veh. J. 10 (2019) 55. |
[10] | S.S. Xu, X.M. Gao, Y. Hua, A. Neville, Y.N. Wang, K. Zhang, Energy Storage Mater. 26 (2020) 534-542. |
[11] |
A. Das, R. Fritz, M. Finuf, I. Masters, Opt. Laser Technol. 132 (2020) 106498.
DOI URL |
[12] | R. Waghmode, H. Jadhav, K. Kanade, A. Torane, Mater. Sci. Energy Technol. 2 (2019) 556-564. |
[13] |
K.Y. Wei, Y. Zhao, Y.X. Cui, J.L. Wang, Y.H. Cui, R.T. Zhu, Q.C. Zhuang, M.Z. Xue, J. Alloy. Compd. 769 (2018) 110-119.
DOI URL |
[14] |
U.K. Sen, S. Mitra, RSC Adv.. 2 (2012) 11123-11131
DOI URL |
[15] | X.Q. Fu, Y.C. Ji, X.Q. Cheng, C.F. Dong, Y. Fan, X.G. Li, Mater. Today Commun. 25 (2020) 101429. |
[16] | M. Atapour, X. Wang, K. Färnlund, I. Odnevall Wallinder, Y. Hedberg, Elec-trochim. Acta 354 (2020) 136748. |
[17] |
A.A. Tiamiyu, U. Eduok, J.A. Szpunar, A.G. Odeshi, Sci. Rep. 9 (2019) 12116.
DOI PMID |
[18] |
S.X. Li, Y.N. He, S.R. Yu, P.Y. Zhang, Corros. Sci. 66 (2013) 211-216.
DOI URL |
[19] |
S. Gollapudi, Corros. Sci. 62 (2012) 90-94.
DOI URL |
[20] |
X.Y. Lou, P.L. Andresen, R.B. Rebak, J. Nucl. Mater. 499 (2018) 182-190.
DOI URL |
[21] |
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50 (2008) 1796-1806.
DOI URL |
[22] |
G. Sander, A. Babu, X. Gao, D.R. Jiang, N. Birbilis, Corros. Sci. 179 (2021) 109149.
DOI URL |
[23] |
A. Shahriari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B.S. Amirkhiz, M. Moham-madi, Electrochim. Acta 339 (2020) 135925.
DOI URL |
[24] |
H. Zhang, P. Xue, L.H. Wu, Q.N. Song, D. Wang, B.L. Xiao, Z.Y. Ma, Corros. Sci. 174 (2020) 108847.
DOI URL |
[25] |
J.O. Park, H. Böhni, Electrochem. Solid-State Lett. 3 (2000) 416.
DOI URL |
[26] | N.S. Al-Mamun, K. Mairaj Deen, W. Haider, E. Asselin, I. Shabib, Addit. Manuf. 34 (2020) 101237. |
[27] |
M. Salasi, G. Stachowiak, G. Stachowiak, M. Kilburn, Corros. Sci. 67 (2013) 298-303.
DOI URL |
[28] |
H.F. Liu, J.B. Sun, J. Qian, B.S. Wang, S.K. Shi, Y. Zhu, Y. Wang, A. Neville, Y. Hua, Corros. Sci. 187 (2021) 109495.
DOI URL |
[29] |
C.G. de Andrés, G. Caruana, L. Alvarez, Mater. Sci. Eng. A 241 (1998) 211-215.
DOI URL |
[30] |
J. Janovec, D. Grman, J. Országhová, P. Ševc, P. Záhumenský, J. Patscheider, S. Tuleja, J. Pecha, M. Bogyó, J. Blach, V. Magula, Can. Metall. Q. 41 (2002) 357-364.
DOI URL |
[31] | L. Xia, China’s TISCO boasts research, development of high-tech stainless steel products, >http://en.people.cn/n3/2019/0605/c90000-9584598-11.html, 2019. |
[32] |
X.Q. Yue, L. Zhang, Y. Hua, J. Wang, N. Dong, X.D. Li, S.S. Xu, A. Neville, Appl. Surf. Sci. 529 (2020) 147170.
DOI URL |
[33] |
X.Q. Yue, L. Zhang, X.Y. He, D.C. Kong, Y. Hua, J. Mater. Sci. Technol. 93 (2021) 205-220.
DOI URL |
[34] |
A. Malik, P.M. Kutty, N.A. Siddiqi, I.N. Andijani, S. Ahmed, Corros. Sci. 33 (1992) 1809-1827.
DOI URL |
[35] |
J.Y. Zhong, F.X. Mao, E. Ghanbari, D.D. Macdonald, Electrochim. Acta 251 (2017) 324-335.
DOI URL |
[36] |
Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu, X.G. Li, Corros. Sci. 52 (2010) 3646-3653.
DOI URL |
[37] |
K. Darowicki, S. Krakowiak, P. ´ Slepski, Electrochim. Acta 51 (2006) 2204-2208.
DOI URL |
[38] |
M.P. Seah, I.S. Gilmore, S.J. Spencer, Surf. Interface Anal. 26 (1998) 617-641.
DOI URL |
[39] | M. Kraack, H. Bohni, W. Munster, Mater. Sci. Forum 165 (1995) 192-199. |
[40] |
K. Shimizu, H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, Surf. Interface Anal. 29 (2000) 743-746.
DOI URL |
[41] |
D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, Corros. Sci. 41 (1998) 275-289.
DOI URL |
[42] |
C.C. Huang, W.T. Tsai, J.T. Lee, Surf. Coat. Technol. 79 (1996) 67-70.
DOI URL |
[43] |
M. Kazemipour, M. Mohammadi, E. Mfoumou, A. Nasiri, JOM 71 (2019) 3230-3240.
DOI URL |
[44] |
H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44 (2002) 2393-2407.
DOI URL |
[45] | R.Z. Zand, K. Verbeken, A. Adriaens, Prog. Org. Coat. 72 (2011) 709-715. |
[46] |
W. He, O. Knudsen, S. Diplas, Corros. Sci. 51 (2009) 2811-2819.
DOI URL |
[47] |
P.K. Rai, S. Shekhar, K. Yagi, K. Ameyama, K. Mondal, J. Mater. Eng. Perform. 28 (2019) 7554-7564.
DOI URL |
[48] |
S. Ningshen, M. Sakairi, K. Suzuki, S. Ukai, Appl. Surf. Sci. 274 (2013) 345-355.
DOI URL |
[49] |
J.Z. Yao, D.D. Macdonald, C.F. Dong, Corros. Sci. 146 (2019) 221-232.
DOI URL |
[50] |
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, D. Chen, Y.C. Zhang, K. Du, E.E. Oguzie, X.L. Ma, Nat. Commun. 9 (2018) 2559.
DOI PMID |
[51] |
X.Q. Yue, L. Zhang, Y. Wang, S.S. Xu, C. Wang, M.X. Lu, A. Neville, Y. Hua, Corros. Sci. 163 (2020) 108277.
DOI URL |
[52] |
A.C. Lloyd, J.J. Noël, S. McIntyre, D.W. Shoesmith, Electrochim. Acta 49 (2004) 3015-3027.
DOI URL |
[53] |
E. Lundgren, U. Johansson, R. Nyholm, J. Andersen, Phys. Rev. B 48 (1993) 5525.
PMID |
[54] |
E. De Vito, P. Marcus, Surf. Interface Anal. 19 (1992) 403-408.
DOI URL |
[55] |
D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, X.G. Li, Appl. Surf. Sci. 504 (2020) 144495.
DOI URL |
[56] |
C. Man, Z.W. Duan, Z.Y. Cui, C.F. Dong, D.C. Kong, T.T. Liu, S.G. Chen, X. Wang, Mater. Lett. 243 (2019) 157-160.
DOI URL |
[57] | C. Man, C.F. Dong, T.T. Liu, D.C. Kong, D.K. Wang, X.G. Li, Appl. Surf. Sci. 467 (2019) 193-205. |
[58] |
W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edström, Appl. Surf. Sci. 258 (2012) 5790-5797.
DOI URL |
[59] |
V. Maurice, W.P. Yang, P. Marcus, J. Electrochem. Soc. 145 (1998) 909-920.
DOI URL |
[60] |
R. Kirchheim, B. Heine, S. Hofmann, H. Hofsäss, Corros. Sci. 31 (1990) 573-578.
DOI URL |
[61] |
Z.W. Duan, C. Man, C.F. Dong, Z.Y. Cui, D.C. Kong, L. Wang, X. Wang, Corros. Sci. 167 (2020) 108520.
DOI URL |
[62] |
V. Maurice, W.P Yang, P. Marcus, J. Electrochem. Soc. 145 (1998) 909-920.
DOI URL |
[63] |
J.S. Pan, D. Thierry, C. Leygraf, Electrochim. Acta 41 (1996) 1143-1153.
DOI URL |
[64] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Elec-trochim. Acta 55 (2010) 6218-6227. |
[65] |
E. Sikora, D.D. Macdonald, Solid State Ion. 94 (1997) 141-150.
DOI URL |
[66] | D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 2004. |
[67] |
S. Ningshen, U.K. Mudali, V. Mittal, H. Khatak, Corros. Sci. 49 (2007) 481-496.
DOI URL |
[68] |
S.J. Gao, C.F. Dong, H. Luo, K. Xiao, X.G. Li, Anal. Lett. 47 (2014) 1162-1181.
DOI URL |
[69] |
K. Azumi, T. Ohtsuka, N. Sato, J. Electrochem. Soc. 134 (1987) 1352.
DOI URL |
[70] |
Z.Y. Cui, S.S. Chen, Y.P. Dou, S.K. Han, L.W. Wang, C. Man, X. Wang, S.G. Chen, Y.F. Cheng, X.G. Li, Corros. Sci. 150 (2019) 218-234.
DOI URL |
[71] | C. Man, C.F. Dong, Z.Y. Cui, K. Xiao, Q. Yu, X.G. Li, Appl. Surf. Sci. 427 (2018) 763-773. |
[72] |
Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.H. Chen, X. Wang, Z.Y. Liu, X.G. Li, Corros. Sci. 118 (2017) 31-48.
DOI URL |
[73] |
J.H. Kennedy, K.W. Frese Jr, J. Electrochem. Soc. 125 (1978) 723.
DOI URL |
[74] |
J.H. Ding, L. Zhang, M.X. Lu, J. Wang, Z.B. Wen, W.H. Hao, Appl. Surf. Sci. 289 (2014) 33-41.
DOI URL |
[75] |
Z. Wang, L. Zhang, X. Tang, Z.Y. Cui, J.P. Xue, M.X. Lu, Int. J. Miner. Metall. Mater.. 24 (2017) 943-953.
DOI URL |
[76] |
H.J. Jang, H. Kwon, J. Electroanal. Chem. 590 (2006) 120-125.
DOI URL |
[77] |
L.T. Wang, A. Seyeux, P. Marcus, Corros. Sci. 165 (2020) 108395.
DOI URL |
[78] |
B. Lynch, S. Neupane, F. Wiame, A. Seyeux, V. Maurice, P. Marcus, Appl. Surf. Sci. 554 (2021) 149435.
DOI URL |
[79] |
U. Stimming, J. Schultze, Electrochim. Acta 24 (1979) 859-869.
DOI URL |
[80] |
A. Simoes, M. Ferreira, B. Rondot, M. da Cunha Belo, J. Electrochem. Soc. 137 (1990) 82.
DOI URL |
[81] |
Z.H. Dong, W. Shi, G.A. Zhang, X.P. Guo, Electrochim. Acta 56 (2011) 5890-5897.
DOI URL |
[82] |
A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, P. Marcus, Corros. Sci. 51 (2009) 941-948.
DOI URL |
[83] | Q. Pang, Density Functional Theory Study of the Reaction Mechanism of Chlo-ride-Induced Depassivation of α-Fe 2 O 3, Oregon State University, 2019 Ph.D. Thesis. |
[84] |
M. Liu, Y. Jin, C.H. Zhang, C. Leygraf, L. Wen, Appl. Surf. Sci. 357 (2015) 2028-2038.
DOI URL |
[85] |
K. Sugimoto, Y. Sawada, Corros. Sci. 17 (1977) 425-445.
DOI URL |
[86] |
C.D. Dai, H. Luo, J. Li, C.W. Du, Z.Y. Liu, J.Z. Yao, Appl. Surf. Sci. 499 (2020) 143903.
DOI URL |
[87] |
A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, Corros. Sci. 53 (2011) 3186-3192.
DOI URL |
[88] | D.D. Macdonald, J. Electrochem. Soc. 12 (1992) 3434-3449. |
[89] |
A.A. Aghuy, M. Zakeri, M.H. Moayed, M. Mazinani, Corros. Sci. 94 (2015) 368-376.
DOI URL |
[90] |
J.L. Lv, M. Yang, H. Miura, T.X. Liang, Mater. Res. Bull. 91 (2017) 91-97.
DOI URL |
[91] |
E. Trillo, L. Murr, Acta Mater. 47 (1998) 235-245.
DOI URL |
[92] | A.Q. Lü, Y. Zhang, Y. Li, G. Liu, Q.H. Zang, C.M. Liu, Acta Metall. Sin. Engl. Lett. 19 (2006) 183-189. |
[93] | H.B. Li, Z.H. Jiang, Q.F. Ma, Z. Li, Adv. Mater. Res. 217-218 (2011) 1180-1184. |
[94] | D. Li, L. Zhang, X. Wang, Z. Yang, X. Yue, M. Lu, Corrosion 2018, NACE Interna-tional, Phoenix, USA, 2018. |
[95] |
D. Farkas, Metall. Mater. Trans. A 52 (2021) 1117-1126.
DOI URL |
[96] |
E. Angelini, B. De Benedetti, F. Rosalbino, Corros. Sci. 46 (2004) 1351-1367.
DOI URL |
[97] |
V. Trindade, U. Krupp, P.E.G. Wagenhuber, H.J. Christ, Mater. Corros. 56 (2005) 785-790.
DOI URL |
[98] |
Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, Scr. Mater. 141 (2017) 94-98.
DOI URL |
[99] | D.C. Kong, C.F. Dong, S.L. Wei, X.Q. Ni, L. Zhang, R.X. Li, L. Wang, C. Man, X.G. Li, Addit. Manuf. 38 (2021) 101804. |
[1] | Yingrui Liu, Linlin Liu, Shuyu Li, Rujia Wang, Peng Guo, Aiying Wang, Peiling Ke. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process [J]. J. Mater. Sci. Technol., 2022, 121(0): 67-79. |
[2] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
[3] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[4] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[5] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[6] | L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng. Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89(0): 158-166. |
[7] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[8] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[9] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[10] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[11] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[12] | Xiaoqi Yue, Lei Zhang, Xiaoyan He, Decheng Kong, Yong Hua. Research Article Hypo-toxicity and prominent passivation characteristics of 316 L stainless steel fabricated by direct metal laser sintering in a simulated inflammation environment [J]. J. Mater. Sci. Technol., 2021, 93(0): 205-220. |
[13] | Changgang Wang, Rongyao Ma, Yangtao Zhou, Yang Liu, Enobong Felix Daniel, Xiaofang Li, Pei Wang, Junhua Dong, Wei Ke. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93(0): 232-243. |
[14] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[15] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||