J. Mater. Sci. Technol. ›› 2022, Vol. 121: 67-79.DOI: 10.1016/j.jmst.2022.01.011
• Research Article • Previous Articles Next Articles
Yingrui Liua,b, Linlin Liua, Shuyu Lia,b, Rujia Wanga,c, Peng Guoa, Aiying Wanga,b,*(), Peiling Kea,b,*(
)
Received:
2021-11-18
Revised:
2021-12-28
Accepted:
2022-01-15
Published:
2022-09-10
Online:
2022-03-15
Contact:
Aiying Wang,Peiling Ke
About author:
kepl@nimte.ac.cn (P. Ke).Yingrui Liu, Linlin Liu, Shuyu Li, Rujia Wang, Peng Guo, Aiying Wang, Peiling Ke. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process[J]. J. Mater. Sci. Technol., 2022, 121: 67-79.
Fig. 4. Variations of OCP with time recorded before, during and after sliding in intermittent mode with fixed duration time Y = 20 min and the varying sliding times X. (a) X = 20 min, (b) X = 10 min, (c) X = 5 min and (d) X = 2 min.
Fig. 5. Cross-sectional profiles of the wear track under continues friction and intermittent friction for varying tribocorrosion time X (a), corresponding calculated wear rate (b).
Fig. 6. Variations of OCP with time recorded before, during and after sliding under intermittent mode with fixed sliding time X = 2 min and the varying pause times Y. (a) Y = 20 min, (b) Y = 10 min, (c) Y = 5 min and (d) Y = 2 min.
Fig. 7. Cross-sectional profiles of the wear track under continues friction and intermittent friction for varying tribocorrosion time X (a), corresponding calculated wear rate (b).
Fig. 9. Characterization of microstructures beneath wear track after tribocorrosion test: (a) overall view of BFTEM image, (b) locally enlarged BF image obtained in A position, (c) locally enlarged BF image obtained in B position, (d)-(f) SAED pattern and HRTEM images of A position, (g)-(i) SAED pattern and HRTEM images of B position.
Fig. 10. Indentation curves inside and outside of the wear track after tirbocorrosion test. The average calculated hardness and elastic modulus values are inserted.
Parameters | Before sliding | After sliding |
---|---|---|
Rs (Ω·cm2) | 14.9 | 11.1 |
Yf (Ω-1cm-2n-2 × 10-5) | 3.57 | 0.21 |
nf | 0.916 | 0.818 |
Rf (MΩ·cm2) | 2.82 | 2.16 |
Ydll (Ω-1cm-2n-2 × 10-5) | 1.71 | 2.78 |
ndll | 0.719 | 0.931 |
Rct (MΩ·cm2) | 0.61 | 1.15 |
χ2 ×10-4 | 5.93 | 3.95 |
Table 1. Fitting parameter values for EIS spectra of 316L SS before and after sliding.
Parameters | Before sliding | After sliding |
---|---|---|
Rs (Ω·cm2) | 14.9 | 11.1 |
Yf (Ω-1cm-2n-2 × 10-5) | 3.57 | 0.21 |
nf | 0.916 | 0.818 |
Rf (MΩ·cm2) | 2.82 | 2.16 |
Ydll (Ω-1cm-2n-2 × 10-5) | 1.71 | 2.78 |
ndll | 0.719 | 0.931 |
Rct (MΩ·cm2) | 0.61 | 1.15 |
χ2 ×10-4 | 5.93 | 3.95 |
Fig. 13. Schemic illustration of evolution in OCP of 316L SS during and after sliding (a), the evolution of repassivation time and repassivation rate (K1) obtained from Fig. 4 during the intermittent tribocorrosion (b).
Fig. 14. SEM morphology of the wear track after continuous (a) and intermittent (b) tribocorrison test, local enlarged draw inside the wear track (c) and the 3D image of the wear track determined by laser optical profilometry (d), Rq=0.265 μm.
[1] |
R.J.K. Wood, Wear 376-377 (2017) 893-910.
DOI URL |
[2] | J. Chen, J. Wang, F. Yan, Q. Zhang, Q.A. Li, Tribol. Int. 81 (2015) 1-8. |
[3] |
F.B. Saada, Z. Antar, K. Elleuch, P. Ponthiaux, Wear 328-329 (2015) 509-517.
DOI URL |
[4] |
F.B. Saada, Z. Antar, K. Elleuch, P. Ponthiaux, N. Gey, Wear 394-395 (2018) 71-79.
DOI URL |
[5] |
M.K. Dimah, F. Devesa Albeza, V. AmigóBorrás, A. Igual Muñoz, Wear 294-295 (2012) 409-418.
DOI URL |
[6] |
R. Yazdi, H.M. Ghasemi, C. Wang, A. Neville, Corros. Sci. 128 (2017) 23-32.
DOI URL |
[7] | M.T. Mathew, M.A. Wimmer, Tribocorrosion of Passive Metals and Coatings, 2011, pp. 368-400. |
[8] | A. López-Ortega, J.L. Arana, R. Bayón, Int. J. Corros. 2018 (2018) 1-24. |
[9] |
Y. Zhang, X. Yin, J. Wang, F. Yan, Corros. Sci. 88 (2014) 423-433.
DOI URL |
[10] |
F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Wear 306 (2013) 27-35.
DOI URL |
[11] |
V.G. Pina, V. Amigó, A.I. Muñoz, Corros. Sci. 109 (2016) 115-125.
DOI URL |
[12] |
Z. Doni, A.C. Alves, F. Toptan, J.R. Gomes, A. Ramalho, M. Buciumeanu, L. Palaghian, F.S. Silva, Mater. Des. 52 (2013) 47-57 (1980-2015).
DOI URL |
[13] |
S. Mischler, S. Debaud, D. Landolt, J. Electrochem. Soc. 145 (1998) 750-758.
DOI URL |
[14] |
V. Dalbert, N. Mary, B. Normand, C. Verdu, T. Douillard, S. Saedlou, Wear 420-421 (2019) 245-256.
DOI URL |
[15] |
S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, C. Demangel, Surf. Coat. Technol. 224 (2013) 82-87.
DOI URL |
[16] |
J. Li, Y.H. Lu, X.H. Tu, W. Li, Wear 414-415 (2018) 289-295.
DOI URL |
[17] |
J. Perret, E. Boehm-Courjault, M. Cantoni, S. Mischler, A. Beaudouin, W. Chitty, J.P. Vernot, Wear 269 (2010) 383-393.
DOI URL |
[18] |
B. Zhang, J. Wang, F. Yan, Corros. Sci. 131 (2018) 252-263.
DOI URL |
[19] |
M. Salasi, G. Stachowiak, G. Stachowiak, Corros. Sci. 98 (2015) 20-32.
DOI URL |
[20] |
R.C.C. Silva, R.P. Nogueira, I.N. Bastos, Electrochim. Acta 56 (2011) 8839-8845.
DOI URL |
[21] |
Y. Sun, E. Haruman, Surf. Coat. Technol. 205 (2011) 4280-4290.
DOI URL |
[22] |
C.B. von der Ohe, R. Johnsen, N. Espallargas, Wear 269 (2010) 607-616.
DOI URL |
[23] |
Q. Guo, J. Liu, M. Yu, S. Li, Appl. Surf. Sci. 327 (2015) 313-320.
DOI URL |
[24] | D. Wu, Z. Guan, Q. Cheng, W. Guo, M. Tang, Y. Liu, Wear 452-453 (2020) |
[25] | I. Çaha, A.C. Alves, C. Chirico, S.A. Tsipas, I.R. Rodrigues, A.M.P. Pinto, C.R. Gran-dini, L.A. Rocha, E. Gordo, F. Toptan, Corros. Sci. 176 (2020) |
[26] |
P. Ponthiaux, F. Wenger, D. Drees, J.P. Celis, Wear 256 (2004) 459-468.
DOI URL |
[27] |
A. López, R. Bayón, F. Pagano, A. Igartua, A. Arredondo, J.L. Arana, J.J. González, Wear 338-339 (2015) 1-10.
DOI URL |
[28] |
A. C. Vieira, L.A. Rocha, N. Papageorgiou, S. Mischler, Corros. Sci. 54 (2012) 26-35.
DOI URL |
[29] | A. Ahmadi, F. Sadeghi, J. Tribol. Trans. ASME 143 (2021) |
[30] |
L. Li, L.L. Liu, X. Li, P. Guo, P. Ke, A. Wang, ACS Appl. Mater. Interfaces 10 (2018) 13187-13198.
DOI URL |
[31] |
D. Klotz, Electrochem. Commun. 98 (2019) 58-62.
DOI URL |
[32] | N. Mary, B. Ter-Ovanessian, B. Normand, Wear 460-461 (2020) 23478-23488. |
[33] |
S. Kossman, L.B. Coelho, A. Mejias, A. Montagne, A. Van Gorp, T. Coorevits, M. Touzin, M. Poorteman, M.G. Olivier, A. Iost, M.H. Staia, Wear 456-457 (2020) 203341-203355.
DOI URL |
[34] | M. Keddam, F. Wenger, D. Landolt, S. Mischler, in:Tribocorrosion of Passive Metals and Coatings, Woodhead Publishing, 2011, pp. 187-221. |
[35] |
T. Hanawa, K. Asami, K. Asaoka, J. Biomed. Mater. Res. 40 (1998) 530-538.
DOI URL |
[36] |
B.A. Okorie, W.B. Nowak, J. Electrochem. Soc. 130 (1983) 290-296.
DOI URL |
[37] |
K. Fushimi, T. Yamamoto, K. Azumi, M. Seo, H. Habazaki, Electrochim. Acta 52 (2007) 6901-6910.
DOI URL |
[38] |
P. Jemmely, S. Mischler, D. Landolt, Wear 237 (2000) 63-76.
DOI URL |
[39] | S. Wei, H. Zhang, C. Tangpatjaroen, J. Tarnsangpradit, A.D. Usta, M. Eriten, J.H. Perepezko, I. Szlufarska, Acta Mater. 209 (2021) |
[40] |
C.C. Bampton, I.P. Jones, M.H. Loretto, Acta Metall. 26 (1978) 39-51.
DOI URL |
[41] |
Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Mater. Sci. Eng A 552 (2012) 514-522.
DOI URL |
[42] |
S.S.F. de Dafé, D.R. Moreira, M.d.S. Matoso, B.M. Gonzalez, D.B. Santos, Mater. Sci. Forum 753 (2013) 185-190.
DOI URL |
[43] |
M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, M.E. Orazem, C.M. Sánchez-Sánchez, B. Tribollet, V. Vivier, Electrochim. Acta 201 (2016) 340-347.
DOI URL |
[44] |
X.Y. Wang, D.Y. Li, Electrochim. Acta 47 (2002) 3939-3947.
DOI URL |
[45] |
P. Henry, J. Takadoum, P. Berçot, Corros. Sci. 51 (2009) 1308-1314.
DOI URL |
[46] |
R. Priya, C. Mallika, U.K. Mudali, Wear 310 (2014) 90-100.
DOI URL |
[47] |
S. Mischler, A. Spiegel, D. Landolt, Wear 225-229 (1999) 1078-1087.
DOI URL |
[1] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[2] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
[3] | M.C. Niu, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels [J]. J. Mater. Sci. Technol., 2022, 104(0): 52-58. |
[4] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[5] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[6] | Qiyu Wang, Shenghu Chen, Xinliang Lv, Haichang Jiang, Lijian Rong. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114(0): 7-15. |
[7] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[8] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
[9] | Honglin Yan, Jianqiu Wang, Zhiming Zhang, Bright O. Okonkwo. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water [J]. J. Mater. Sci. Technol., 2022, 122(0): 219-230. |
[10] | Zhiquan Wang, Chun Li, Ragnar Kiebach, Ilaria Ritucci, Ming Chen, Jian Cao. Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze [J]. J. Mater. Sci. Technol., 2022, 121(0): 174-180. |
[11] | Qingjie Li, Dandan Qin, Yunzhuo Lu, Xuemei Zhu, Xing Lu. Laser additive manufacturing of ductile Fe-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2022, 121(0): 148-153. |
[12] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
[13] | Cunxiu Zhang, Xiaolong Lu, Cong Wang, Xudong Sui, Yanfang Wang, Haibin Zhou, Junying Hao. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow [J]. J. Mater. Sci. Technol., 2022, 107(0): 172-182. |
[14] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[15] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||